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Visual counts gathered within citizen science programs are increasingly used to determine distribution and abundance of 
species of conservation concern. However, to obtain reliable patterns from counts, imperfect detection should always be 
considered, with particular reference to rare and elusive species. By analysing data from a citizen science monitoring program 
based on multiple simultaneous observers, we studied detection probability of the Sardinian mountain newt, Euproctus 
platycephalus. Detectability of individual newts widely varied among observers, and was positively affected by the number of 
newts exposed to during sampling. Training, although appearing to improve detectability, did not accommodate for differences 
among trained observers.  No effect of sampling hour, tree shade, cloud cover, water flow, turbidity, and temperature was 
found, possibly due to standardisation of sampling conditions. Depending on observer’s skills and the population exposed 
to during sampling, detection probability of newt populations can widely vary. Most of the sampling units (pools) had few 
newts exposed to during sampling, with a high probability of recording false absences. Herpetological surveys could be more 
extensively based on multiple simultaneous observers to reduce observer heterogeneity bias in the detection process, and 
obtain more reliable patterns of species abundance and distribution for conservation purposes.
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INTRODUCTION

Citizen science is an important source of information 
to assess distribution, abundance, and conservation 

status of animals (Anadón et al., 2009; Conrad & Hilchey, 
2010; Griffiths et al., 2015; McKinley et al., 2016; Vignoli 
et al., 2016). For practical and economic reasons, visual 
counts are often used to determine species distribution 
and abundance of animal populations (Williams, Nichols 
& Conroy, 2002). Simple counts are also widely used 
in herpetological surveys, which often involve non-
professionals for visual or acoustic observations (Griffiths 
et al., 2015). 
 To provide reliable inference about distribution and 
abundance, simple counts need to address variation in 
detectability through space and time (Royle & Nichols 
2003; Royle, 2004; Schmidt & Pellet, 2009; Tanadini 
& Schmidt, 2011). However, species availability and 
conditional detection probability (i.e. probability of 
detection, given an animal is exposed to sampling) need 
to be partitioned to understand the detection process 
(Pollock et al., 2004; O’Donnell, Thompson & Semlitsch, 
2015). Conditional detection probability can be studied 
by applying capture-recapture models to count data 

coming from multiple simultaneous observers (Nichols, 
Tomlinson & Waggerman, 1986; Williams, Nichols & 
Conroy, 2002; Grant et al., 2005; Schmidt & Pellet, 2009; 
O’Donnell, Thompson & Semlitsch, 2015). With the 
available statistical software (White & Burnham, 1999; 
Nichols et al., 2000; Fiske & Chandler, 2011), multiple 
observer data can be analysed if individual detection 
histories of animals are recorded.  Nevertheless, 
recording detection histories in monitoring programs that 
involve non-professionals can be difficult, as people that 
do monitoring for fun or within a non-research position 
(Griffiths et al., 2015) could perceive it as unnecessary. 
 The Sardinian mountain newt,  Euproctus 
platycephalus (Urodela, Amphibia), is an endemic species 
(Carranza & Amat, 2005) restricted to Sardinia, Italy, 
where it inhabits creeks and small lakes (Lecis & Norris, 
2003a; b). Given its reduced distribution and continuing 
decline, the species was classified as Endangered by 
the IUCN Red List (IUCN, 2009). The species has been 
consequently monitored by the regional governmental 
agency Forestas, in cooperation with other public bodies, 
research institutions and non-professionals (Casula et 
al., 2010). A recent assessment based on data from this 
community-based monitoring effort (Conrad & Hilchey, 
2010) showed that the distribution of the Sardinian 
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mountain newt was underestimated (Vignoli et al., 
2016), possibly as a consequence of low detectability of 
this well camouflaged and elusive species. It is therefore 
important to understand the detection process involved 
during monitoring programs for better monitoring and 
conservation (Nichols & Williams, 2006; Tanadini & 
Schmidt, 2011). 
 Here, using data coming from multiple observers 
that did not record individual detection histories of 
newts, we apply capture-recapture models to study the 
conditional detection process involved in the monitoring 
effort mentioned above. We evaluate whether detection 
probability of newts varies among observers, and 
depends on factors potentially affecting the observation 
process (Henke, 1998; Schmidt & Pellet, 2009; Tanadini 
& Schmidt, 2011; Lardner et al., 2015). Specifically, we 
hypothesise that visual detection of individual newts 
varies with observer’s skills (identity and training), 
and is affected by light conditions (tree shade and 
presence of clouds), speed of water flow, turbidity, water 
temperature, time of the day, and newt abundance. 

MethodS

Sampling design
The Sardinian mountain newt is the only aquatic newt 
inhabiting Sardinian streams (Lecis & Norris, 2003b; 
Grill et al., 2007), and its identification is therefore 
straightforward. Surveys could thus involve trained and 
untrained personnel of the regional government agency 
Forestas, who are non-professional researchers. Nine 
technicians with previous experience in newt visual 
sampling were considered as trained, whereas eight 
forestry workers that participated for the first time to 
sampling were considered as untrained. The 17 observers 
conducting visual surveys contributed unevenly to the 
data set, and the proportion of trained and untrained 
observers was unbalanced (see Table 1).   
 Due to logistic, economic, and safety constraints, 
surveys were diurnal. Even if Sardinian mountain newt 
activity (i.e. availability for sampling) could be higher at 
night, diurnal surveys proved to be a valid tool to study 
the species distribution (Lecis & Norris, 2003a; b; Vignoli 
et al., 2016).  Local populations of the Sardinian mountain 
newt are often associated with steep creeks that are 
difficult to hike, due to waterfalls, rugged landscape, or 
vegetation barriers. The sampling process was thus as 
quick as possible, to allow more extensive survey of the 
creek within the available time and personnel.
 In an attempt to standardise sampling conditions and 
maximise newt conditional detectability and availability 
for sampling (O’Donnell et al., 2015), surveys were 
planned for warm, sunny days between March and 
October, according to the local climate and creek water 
regime.  We avoided cold and rainy months (November 
– February), conducting surveys when water tended to 
be slower and at optimal temperatures (Lecis & Norris, 
2003b) to increase visibility and newt availability for 
sampling. 
 Creeks known to be inhabited by Sardinian newts 
were surveyed by no less than two observers (2-4) by 

hiking upstream for variable transect lengths (Table 1). 
Newts were searched in the upper parts of creeks where 
pools are small (1-5 m wide). Different pools were clearly 
separated by creek narrowing, rocks, or dry parts (Lecis 
& Norris, 2003b; Bovero et al., 2005).
 The observation process was driven by a leading 
observer. When slow moving waters allowed observation 
(pools), observers were asked to stop for simultaneous 
visual inspection. The observation lasted up to 5 
minutes, with searching effort increasing with the size 
of the inspected pool. During this time, observers were 
allowed to freely move around the pool to change visual 
angle. Each observer inspected the whole pool and 
counted newts silently, carefully avoiding any sign of 
successful observation. In this way observers attempted 
to be independent (Nichols, Tomlinson & Waggerman, 
1986) despite simultaneous search. To reduce bias 
in detectability due to newt disturbance, observers 
approached the pool simultaneously, so that hiding 
or moving of disturbed newts could similarly affect 
observer’s detection probability. However, in most of the 
cases newts did not respond to approaching observers 
with a sudden escape, as they tend to stand still or move 
slowly towards a refuge. 
 At the end of the independent observation, observers 
were asked to share their visual captures by saying in 
which positions single newts were seen, and where they 
eventually moved. As pools were small and Sardinian 
newts tend to be sedentary, discriminating “visual 
recaptures” (animals seen by more than one observer) 
vs. single captures (animal seen by only one observer) 
was possible (a mental map of newt locations could be 
immediately shared among crew members). In this way, 
it was possible to exclude multiple counts in recording the 
total number of different animals jointly seen by the crew 
in each pool inspected (Ci).  The number of newts seen by 
each observer (j) was also recorded (Cij). Despite the fact 
that such observations could be translated into individual 
detection histories of newts, only simple counts were 
recorded to speed up the survey (e.g., using observer’s 
initials, records were as follows CiPC = 5; CiEC = 7; CiSM = 4; 
Ci = 12). As discussed in the statistical analysis section, 
this simplification of data gathering can be handled by 
simple extensions of capture-recapture models applied 
to multiple independent observers (Nichols, Tomlinson 
& Waggerman, 1986; Williams, Nichols & Conroy, 2002; 
Schmidt & Pellet, 2009). 
 All suitable pools found within transects were 
inspected during surveys. However, only data relating to 
pools where at least one newt was seen were recorded 
(pools with no or unknown exposed newts cannot be 
used to estimate conditional detection probability). 
During 2010 and 2014, 23 transects (different creek/day) 
were surveyed, and 152 independent pools with newts 
were recorded. The number of pools with at least one 
newt differed widely among creeks (1-25 pools).

Factors affecting newt conditional detectability
Among the factors thought to affect newt conditional 
detectability, observer’s identity (Identity) is a potentially 
important source of variation that need to be addressed 
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in monitoring programs (Lardner et al., 2015). Indeed, 
observers might have different skills and level of 
attention, and might therefore greatly differ in visual 
detection capabilities despite training (e.g. Henke, 1998; 
Lardner et al., 2015). 
 Environmental factors thought to affect the visual 
detection process were measured by the leading 
observer as follows.
 Light conditions (Shade) were measured as 0, 10, 
..., 100% of water surface covered by trees, visually 
estimated at the sub-transect level (i.e., portions of 
transects with homogeneous vegetation cover). Shade 
should negatively affect conditional detectability (no 
artificial light was used during surveys). 
 Speed of water flow (Flow) was visually estimated 
as 1= null, 2 = low, 3 = medium, and 4 = strong (data 
ranging from null to medium). Water turbidity (Turb) was 
visually estimated using the same four categories, with 
data ranging from null to low. Higher flows or turbidity 
should lower the visibility below water, with consequent 
lower detectability of newts. 
 Water temperature (Temp) was measured several 
times at the transect level, and generally did not change 
among adjacent pools. Depending on transect, data 
ranged from 7 to 25 ̊ C. Optimal water temperature (Lecis 

& Norris, 2003b) could positively affect newt mobility 
and response to disturbance, with possible increased 
visibility of exposed newts (it is more likely to see newts 
when they move as the observers approach the pool). 
 Cloud cover (Clouds) was measured by assigning 
value 0 = clouds < 50% sky, and 1 = clouds > 50% sky. 
Time of the day (Hour) was measured as morning or 
afternoon (Hour < 13 = 1; > 13 = 0). Clouds and Hour could 
capture variation of light conditions or daily patterns of 
observer’s activity.
 Local abundance positively affects the probability of 
detecting amphibian populations (Tanadini & Schmidt,  
2011) as well as single animals (Henke, 1998). Here the 
focus will be on detection probability of individual newts 
available for sampling at the pool level (sampling unit), 
which could increase with a higher number of “searched 
items” present (Henke, 1998). The number of newts 
available for sampling was approximated by total number 
of different newts jointly seen by the crew in a given pool 
(Ci). 

Statistical models  
Simple counts can be analysed using N-mixtures, which 
account for detectability by using spatially and temporally 
replicated counts (Royle, 2004). However, temporally 

Tr Creek name day Hour Observers Length (m) Pools Newts
1 Su Cunventu March 15, 2010 12,00-13,00 PC, SM, X 180 1 1

2 Su Gattu March 19, 2010 11,15-15,15 PC, SM, X 980 2 8

3 Maidopis April 7, 2010 09,50-11,20 AM, SM 150 2 2

4 Lardai April 9, 2010 11,00-12,30 PC, SM, X 360 5 6

5 Codula Orbisi April 14, 2010 14.30-16,40 PC, SM 800 1 1

6 Cedrino April 21, 2010 16,00-17,00 PC, SM 400 1 2

7 Donna Pruna May 5, 2010 12,30-15,15 PC, EC, SM 240 1 1

8 Maidopis May 10, 2010 09,20-11,20 AM, EC 150 2 3

9 Serra e scova May 21, 2010 12,00-13,00 PC, SM, X 210 9 27

10 Su Gattu June 3, 2010 10,30-14,00 AM, SM, X 1030 6 27

11 Serra e scova June 6, 2010 17,00-19,00 PC, EC, SF, X 320 25 89

12 Donna Pruna June 14, 2010 11,00-13,00 PC, EC 400 3 4

13 Cedrino June 25, 2010 11,50-13,00 PC, EC, SF 1020 1 1

14 Codula Orbisi June 30, 2010 14,00-16,00 PC, X 400 1 5

15 Su Cunventu April 15, 2014 10,00-14,00 PC, SF 330 3 3

16 Badde gattiu June 6, 2014 10,30-12,30 PC, DL 240 13 52

17 Bacu Orrodas June 6, 2014 14,00-14,45 PC, DL 200 2 3

18 Lardai June 17, 2014 10,00-12,00 PC, X 260 2 2

19 Paolino August 7, 2014 12,20-16,20 PC, MM 1060 1 1

20 Pisciaroni August 12, 2014 13,00-16,00 PC, RS, CA 450 20 70

21 Bacu non bie boe August 27, 2014 12,00-15,00 PC, MM, DL, X 420 21 102

22 Serra e scova October 1, 2014 11,00-13,00 PC, DL, X 210 22 102

23 Isadalu October 1, 2014 14,00-16,00 PC, DL, X 290 8 18

Table 1. Summary of Sardinian newt counts gathered with multiple simultaneous independent observers.  

Notes. Tr: transect progressive number; Observers: trained technicians are identified with initials; X = untrained per-
sonnel; Length: transect length; Pools: number of pools found per transect with at least 1 newt; Newts: total number 
of newts counted during the transect (multiple counts excluded).

P. Casula et al.
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replicated counts could result in variation of the number 
of animals exposed to sampling due to temporary 
emigration, potentially confounding availability of animals 
for sampling with conditional detection probability 
(O’Donnell, Thompson & Semlitsch, 2015). To study 
conditional detection probability, multiple simultaneous 
observers can be involved, either independent (Nichols, 
Tomlinson & Waggerman, 1986) or dependent (Nichols 
et al. 2000; Williams, Nichols & Conroy, 2002). 
 Available statistical software (White & Burnham, 
1999; Nichols et al., 2000; Fiske & Chandler, 2011) allows 
to estimate detectability from count data coming from 
multiple observers if individual detection histories of 
animals are recorded. However, counts coming from 
multiple independent observers (Nichols, Tomlinson & 
Waggerman, 1986) can provide estimates of detection 
probability even when no detection histories are 
recorded, as follows. 
 By applying capture – recapture models to 
simultaneous counts (Nichols, Tomlinson & Waggerman, 
1986), the expected count of observer j, sampling on 
newt population Ni  exposed to sampling in pool i, can be 
written as: 
 1) Cij = Ni pj ,
The parameter pj is the observer-specific conditional 
detection probability of individual newts, given their 
exposure to sampling. This parameter is equivalent to 
capture probability of individuals given their presence in 
the sampled area (see Schmidt & Pellet, 2009 for a nice 
review).  
 The total number of different newts jointly seen by 
the crew in pool i can be written as:
 2) Ci = Ni pc ,
where pc is the cumulative detection probability (Schmidt 
& Pellet, 2009) that, with j=1,2, ..., z  independent 
observers, can be written as: 
 3) pc = 1-(1-p1)(1-p2)...(1-pz).
By combining model 2 and 3, and solving for Ni, the 
model can be written as:
 4) Ni = Ci /(1-∏ (1-pj)).

By combining models 1 and 4, expectations for observer- 
and pool-specific counts can be derived:
 5) Cij = pj Ci /(1-∏ (1-pj)).
Therefore, we obtained a model that allows estimating 
observer-specific detection probability of individual 
newts (pj) by using observer- and pool-specific counts 
(Cij), and total number of different newts jointly seen by 
the crew in a given pool (Ci). Individual detection histories 
of newts are not necessary for detection probability 
estimation, which is done by comparing expected with 
observed Cij. 
 The main limit of this application, as well as of original 
multiple observers approaches (Nichols, Tomlinson 
& Waggerman, 1986; Nichols et al., 2000), is that the 
proportion of animals not exposed to sampling cannot 
be estimated (Schmidt & Pellet, 2009; O’Donnell, 
Thompson & Semlitsch, 2015). However, this approach 
allows exploring the variation of conditional detection 
probability of exposed individuals depending on 
observer’s identity and factors thought to affect the 
sighting process. 
 The variation of conditional detection probability 
with such factors was modelled with a logistic function 
(Neter et al., 1996; Royle & Nichols, 2003; Grant et al., 
2005), where the probability of individual newts to be 
detected by observer j in a given pool i was:  

 6) pij = 

The parameter aj is an intercept that determines the 
intrinsic conditional detection probability of observer 
j. Such intrinsic probability can vary according to the 
estimated parameters (b, c, d, e, f, g, and h), and the 
value of the factors. 
 Finally, for a give observer j, the probability of 
recording false absence on a sampling unit with exposed 
population Ni can be estimated using the following 
model: 
 7) p false absence = (1-pj)

Ni

# Model description log L AICc ∆AICc w1 K
1 pji(Identity, Ci) -597.142 1216.860 0.000 0.577 11

2 pji(Identity, Hour, Ci) -596.851 1218.383 1.523 0.269 12

3 pji(Identity, Cloud, Hour, Ci) -596.843 1220.482 3.623 0.094 13

4 pji(Identity, Temp, Cloud, Hour, Ci) -596.801 1222.523 5.663 0.034 14

5 pji(Identity, Turb, Temp, Cloud, Hour, Ci) -596.800 1224.655 7.796 0.012 15

6 pji(Identity) -602.618 1225.715 8.855 0.007 10

7 pji(Identity, Flow, Turb, Temp, Cloud, 
Hour, Ci)

-596.504 1226.206 9.346 0.005 16

8 pji(Identity, Shade, Flow, Turb, Temp, 
Cloud, Hour, Ci)

-596.423 1228.196 11.336 0.002 17

9 pji(trained and untrained, Ci) -618.279 1242.609 25.749 0.000 3

10 pji(1 group, Ci) -629.968 1263.962 47.102 0.000 2

Table 2. Model selection results. 

Notes: log L = log-likelihood of the model; wi = Akaike’s weight; K = number of parameters.

Visual  detectabi l i ty  and monitor ing programs
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Model selection
Model selection was based on AICc (Burnham & Anderson, 
2002). Considering that comparison was performed 
between expected and observed counts, maximum 
likelihood estimation was based on a Poisson likelihood 
function (Neter et al., 1996). The log-likelihood of the 
model was given by the sum of the log-likelihood of all 
pool- and observer-specific counts (n=471), as follows: 
 loge L = ∑ Cij loge (Cij(e)) - ∑ (Cij(e)) - ∑ loge (Cij!),  
Where Cij are pool- and observer-specific counts, and Cij(e 
are expected pool- and observer-specific counts derived 
from model 5 combined with model 6. 
 Model selection started from the general model 
pji (Identity, Shade, Flow, Turb, Temp, Cloud, Hour, Ci), 
where observer- and pool-specific conditional detection 
probabilities are estimated using the full model 6. In the 
general model, the intercepts aj (Identity) were estimated 
for each trained observer, whereas for untrained 
observers data were merged and 1 intercept estimated 
(see Models.xlsx, supplementary material). 
 To evaluate strength of evidence for each hypothesised 
effect on detection probability, the general model was 
progressively simplified starting from the factor Shade up 
to Count, and eliminating one factor at a time. To evaluate 
training effects, intercepts of the trained technicians were 
merged, resulting in two groups (trained and untrained). 
The presence of identity effects was evaluated assuming 
one common intercept for all observers (1 group). 

ReSuLtS

Overall, 529 different newts in 152 independent pools 
were seen, with an average cumulative count of 3.48 ± 
3.74 (SD) per pool. The distribution of pool specific total 
counts (Ci) is shown in Figure 1. The majority of pools 
(68%) host few newts (counts ranging from 1 to 3). 
 Table 2 shows that the best model selected was 
pji(Identity, Ci), with an Akaike weight (wi) of 0.577, 
and Pearson’s chi-square of 603.55 (n= 471, K= 11; 
overdispersion, c = 1.31). The model states that detection 
probability of newts changes with the total number 
of newts counted per pool (Ci) and among observers 
(Identity). 
 Strength of evidence relative to the effect of the 
number of newt counted on detection probability is 
shown by comparing the best model with model ranked 
6th, pji(Identity), which, starting from the best, assumes no 
effect of Ci on detectability (h set to 0). This simplification 
step provides a model with no support: wi = 0.007 and 
∆AICc = 8.855.
 The evidence in support of the heterogeneity of 
detection probability among observers is even stronger. 
This is shown by the comparison of the best model 
with model ranked 10th, pji(1 group, Ci), which assumes 
no identity effects by using a single constant detection 
probability for all observers and has no support (∆AICc 
= 47.102; wi = 0.000). Additionally, a posteriori grouping 
of similar intercepts showed that at least four groups of 
observers (i.e. four different aj) are necessary to explain 
the data (lowest AICc). However, such arbitrary grouping 
of observers without functional, a priori, means of 
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Figure 1. Proportion of pools with increasing number of 
newts exposed to sampling. 

Figure 2. Newt detection probability variation among 
observers (best and worst), and with increasing number 
of newts exposed to sampling. 

Figure 3. Probability of recording false absence, 
depending on the number of newts exposed to sampling, 
and observer’s skills (best and worst). 
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identifying relevant groups does not provide meaningful 
information and is not presented in Table 2. Considering 
the much lower ∆AICc of model ranked 9th, pji(trained 
– untrained, Ci), ∆AICc = 25.749, compared to the 10th 
(which assumes one group with no difference between 
trained and untrained), observer heterogeneity appears 
to be partially explained with training. 
 Ten intercepts (starting from the best observer: 
aEC=0.225, aPC=-0.378, aMM=-0.491, aCA=-0.549, aDL=-
0.996, aRS=-0.999, aAM=-1.169, aSM=-1.248, aX=-1.398, aSF=-
1.734), and one slope parameter relating detectability 
to the total number of newts counted (h=0.062) were 
estimated from the best model. The positive sign of 
the parameter h suggests higher detectability with 
increasing number of newts observed. The intercepts 
above result in a wide variation of detection probability 
among observers, depending on the number of newts 
exposed to sampling, as shown in Figure 2. Figure 3 
shows the corresponding probability of recording false 
absences. Depending on observer’s skills, more than four 
(best) or 12 (worst) newts must be available for sampling 
in the pool to be certain not to miss the population (pFalse 

absence≈0.02).  
 No evidence was found about the effect on 
detectability of shade, water flow, turbidity, water 
temperature, cloud cover and time of day. Table 2 shows 
that relative simplification steps from the general model 
resulted in a reduction of the AICc values, with the 
unsupported factors eliminated progressively from the 
model selected. 

diSCuSSioN

By applying capture-recapture models (Nichols, 
Tomlinson & Waggerman, 1986; Williams, Nichols 
& Conroy, 2002; Schmidt & Pellet, 2009) to multiple 
observers data coming from a community-based 
monitoring program involving non-professionals, we 
showed that detectability of Sardinian mountain newts 
varies among observers and with the number of newts 
counted. 
 As in other herpetological studies (Lardner et al., 
2015), visual detectability of Sardinian mountain newts 
widely varies among observers and, depending on the 
number of newts available for sampling, can range from 
less than 0.2 to more than 0.8. If one observer is involved 
in monitoring, false absences are very unlikely only when 
four to 12 newts are available for sampling at the pool 
level (sampling unit), assuming respectively a good or 
poor observer.  In other words, only aggregations of 
these animals are very likely to be observed. Considering 
that in the majority of pools total counts ranged from 
one to three newts (Figure 1), the risk of recording 
false absence appears generally high. Additionally, the 
population exposed to sampling is likely smaller than the 
population actually present in the pool and overall in the 
area, due to hiding of individuals or temporary emigration 
(Bailey, Simons & Pollock, 2004; Pollock et al., 2004; 
O’Donnell, Thompson & Semlitsch, 2015). However, 
when two simultaneous observers are involved, the 
probability of recording false absences approaches zero 

(0.03) when there are two to seven newts available for 
sampling, assuming good or poor observers respectively. 
Therefore, selecting the best observers and establishing 
an optimum number depending on their skills could be a 
practical way to reduce the likelihood of recording false 
absences. 
 The low value of aX  (intercept of untrained observers) 
compared with the majority of trained observers suggests 
that training positively affect observer’s performance. 
However, training does not eliminate difference among 
trained observers, and observer’s identity remains 
an important factor requiring to be accommodated 
in monitoring (Lardner et al., 2015). Therefore, with 
particular reference to citizen science programs (Griffiths 
et al., 2015), an initial stage of training could be performed 
by means of multiple observers, so that individual 
detectability can be improved and directly compared with 
the best skilled observers. Comparing multiple observers 
would be an effective way to preliminarily evaluate the 
quality of the data gathered by observers involved in 
citizen science programs (Burgess et al., 2016), and to 
generate prior estimates of individual-level detection 
probabilities that might enhance analysis of subsequent 
surveys. 
 The positive effect of the number of observed newts 
on their detectability suggests that observer’s visual 
effectiveness could be positively affected by the repeated 
observation of the searched items, as hypothesised 
in other herpetological studies (Henke, 1998). The 
observation of newts in a pool will inevitably alert the 
observer, increasing attention. Despite the positive 
effect of animal density on detectability of populations is 
intuitive and well-known (Royle & Nichols, 2003; Tanadini 
& Schmidt, 2011), to our knowledge the effect on single 
newt detectability has not been further investigated 
after Henke’s experimental findings. In practice, there 
is an additional effect related to the human dimension 
(e.g. Bart & Schoultz, 1984; Farmer, Leonard & Horn, 
2012; Lardner et al., 2015) that would result in missing 
small and sparse populations. Such effect should be 
further investigated, with particular reference to citizen 
scientists, because non-professionals could be less 
motivated to survey areas where they “already know” 
the species is absent, or believe the habitat is unsuitable 
(Griffiths et al., 2015), thus possibly reducing their levels 
of attention in low populated areas. 
 Finally, our study showed no evidence of effects 
of environmental factors such as light conditions (tree 
shade and cloud cover), speed of water flow, turbidity, 
water temperature, and hour of the observation on 
detection probability. Similar to other studies (Tanadini 
& Schmidt, 2011), the attempt to standardise weather 
and environmental conditions by selecting suitable 
days for surveys could have resulted in little variations 
of the factors. Additionally, the coarse measurement 
of environmental factors used here might have masked 
any existing association with detectability. Therefore, 
further studies relating detectability to environmental 
factors measured across larger ranges and at the pool 
level could provide more insights about patterns of visual 
conditional detectability of the Sardinia mountain newt.
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 In conclusion, data taken from multiple observers 
can be used to study detectability even when detection 
histories are not recorded. This is not to encourage 
missing to record detection histories, which would allow 
better inference, but to show that data gathered with 
expeditious and simple methods developed within a 
citizen science program (Conrad & Hilchey, 2010; Griffiths 
et al., 2015; McKinley et al., 2016) can be nevertheless 
informative to explore variation of detectability among 
observers and other factor thought to affect the 
observation process involved in monitoring. Considering 
that ignoring the detectability issue translates in 
underestimated distributions (MacKenzie et al., 2005) 
and overstatement of conservation status of species 
(Vignoli et al., 2016), we would encourage designing 
herpetological surveys by using multiple simultaneous 
observers whenever possible. This appears even more 
necessary when variable observers skills markedly affect 
the observation process (Lardner et al., 2015), and 
given logistic and safety issues related to field surveys. 
Extensive surveys to assess species distribution (Vignoli 
et al., 2016), where unknown and sparse populations 
are sampled, seriously risk false absences. To reduce 
this risk two or three simultaneous observers could be 
involved, as they would have a high likelihood to record 
newt presence if the species is available for sampling. 
However, to maximise effectiveness of survey efforts, 
temporal patterns of species availability with changing 
environmental conditions and seasonal activity needs 
to be investigated (O’Donnell, Thompson & Semlitsch, 
2015). To do that, simultaneous multiple observer counts 
could be repeated at appropriated temporal scales, 
following a range of variables thought to affect activity, 
aggregation, and exposure of animals to sampling.
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