Record sizes for the Turkish house gecko, *Hemidactylus turcicus*, from Aegean islands, Greece

YUVAL ITESCU1*, RACHEL SCHWARZ1, MICHAEL MOSES1, PANAYIOTIS PAFILIS2 & SHAI MEIRI1

1Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
2Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 157-84, Greece

*Corresponding author Email: yuvitescu@gmail.com

ABSTRACT - Insular animals are thought to evolve extreme sizes compared to the mainland. The reported maximum body size of the Turkish house gecko, *Hemidactylus turcicus*, does not go beyond 61 mm in snout-vent length, 120 mm in total length and 3.6 g in mass, across its distribution. Here we report much higher size estimates for this species on the Aegean islands of Kassos, Sifnos and Anafi. The commonly perceived drivers of insular gigantism vary across these islands. Therefore, the reasons for the extreme size on these islands, while on other Aegean islands live “normal-sized” geckos, are unclear.

INTRODUCTION

The Turkish house gecko, *Hemidactylus turcicus*, is a nocturnal and insectivorous gecko (Durrell, 1956; Baha El Din, 2006; Bar & Haimovitch, 2012; authors’ personal observations). It is a common edificarian house gecko that frequents rocks, boulders and house walls (the Hebrew origin of Proverbs 30:28 is more specific than common English translation in stating that unlike “a lizard”, a gecko “is caught by hand, yet inhabits the king’s palaces”). It is naturally distributed in Southern Europe, North Africa, the Middle East (Sindaco & Jeremcenko, 2008), Pakistan and India (Sharma, 2005; Khan, 2006). It is widely introduced in the New World, from Panama to the USA (Uetz, 2016). *H. turcicus* is a relatively small member of its genus (Feldman et al., 2016). The vast literature pertaining to its body size suggests it grows to no more than 61 mm in SVL (maximum recorded for males: 60.2 mm, for females: 59.7 mm, Delaugerre, 1984). Our own measurements of 563 live individuals and museum specimens (Table 1; adults and juveniles of both sexes) suggest an overall size range of 17-60.1 mm SVL. Mass data are less common for *H. turcicus*, as they are for lizards in general (Meiri, 2010). Literature data (Huey et al., 1989; Garland, 1994; Irschick et al., 1996; Van Damme & Vanhooydonck, 2001) suggest a maximum of 3.6 g. Our measurements (Table 1) suggest an overall mass range of 0.1-6.5 g.

METHODS

During field work from May 2013 to May 2016 we searched for geckos on several Aegean islands (Fig. 1(a)), by looking under and into possible covers and surveying building, natural and dry-stone walls, both at day and at night. Snout-vent lengths (SVL) and tail lengths of animals were measured using a digital caliper to the 0.01 mm precision. Animals were also weighed to the 0.1 gram precision, and their sex was determined visually.

RESULTS

We found several specimens with SVL, total length and mass that were much larger than previously reported. On 27 May 2014, on Anafi Island, we found a very large female on a house wall (36°20’47.4”N 25°46’27.8”E) foraging for beetles under a street lamp around midnight. This female (60.1 mm SVL; Fig. 1(b)) was gravid with two eggs and weighed 7.9 g which is by far the heaviest specimen ever reported for this species (see above).

We found still longer (but lighter) lizards on Kassos Island, during 6-8 May 2016. Five specimens (three adults and two sub-adults) were found in a single location on this island, inactive under various objects in the western outskirts of the port Fri (35°24’59.4”N 26°55’13.4”E) at midday. While specimens from the nearby islands of

<table>
<thead>
<tr>
<th>Source</th>
<th>Geographic origin</th>
<th>n</th>
<th>Size index</th>
<th>Size range</th>
<th>Size mean</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Museum</td>
<td>Israel</td>
<td>140</td>
<td>SVL (mm)</td>
<td>17.0-60.0</td>
<td>39.7±9.9</td>
<td>Steinhardt Museum of Natural History, Tel Aviv University</td>
</tr>
<tr>
<td>Wild caught</td>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td>Authors’ measurements</td>
</tr>
<tr>
<td>Museum</td>
<td>Aegean Islands,</td>
<td>128</td>
<td>SVL (mm)</td>
<td>29.4-58.1</td>
<td>47.1±5.5</td>
<td>42 islands; Zoologische Staatssammlung München;</td>
</tr>
<tr>
<td></td>
<td>Greece</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zoologische Forschungsmuseum Alexander Koenig in Bonn; Natural History</td>
</tr>
<tr>
<td>Wild caught</td>
<td></td>
<td>217</td>
<td>SVL (mm)</td>
<td>28.9-60.1</td>
<td>47±6.4</td>
<td>22 islands, authors’ measurements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mass (g)</td>
<td>0.5-6.5</td>
<td>3±1.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Body size measurements of *H. turcicus* from Greece and Israel.
Karpatrios and Saria (first *H. turcicus* record from the later island) are of “normal” size, three of the Kassos ones were veritable giants: the largest specimen (Fig. 1(c); TAU #17870), a gravid female with two eggs, measured 64.7 mm (tail length 63.3 mm, mass=6.1 g). It is, to our knowledge, the longest specimen ever recorded of the species. The other specimens (including two adults measuring 58.4 and 58 mm SVL, 4.4 and 3.6 g, respectively) were released soon after capture. The mean SVL of adult Kassos Island *H. turcicus* (60.4 mm) is thus similar to the maximum SVL previously reported.

Potentially, an even larger gecko was found on Sifnos Island. Cyclades Archipelago, Greece, by Cattaneo (1984). This author reported, as part of a table of *H. turcicus* measurements an animal with a SVL of 65 mm (tail length 40 mm, no weight reported). Cattaneo (1984) rounded SVLs to the nearest 1 mm, thus this animal could have been any length from 64.5 to 65.4 mm. It may also be that this measurement represents a typo, because Cattaneo (1984) does not mention anything unusual about this gecko, and its tail is short. We do, however, have reasons to think the figure may be genuine: three weeks after we visited Kassos (on 23 May 2016) one of us (RS) found a very large female (SVL=63.3 mm, regenerated tail length=46.8 mm, mass=5.9 g) on Sifnos (36°58'38.6"N 24°44'25.8"E), supporting the possibility that individuals of this species could be very large there.

DISCUSSION

The reasons for the large sizes of the geckos from Kassos, Sifnos and Anafi are unclear. Insular lizards are often larger than their mainland conspecifics or close relatives (Case, 1978; Pregill, 1986; Meiri, 2007; Raia et al., 2010; Meiri et al., 2011; Senczuk et al., 2014; Slavenko et al., 2016; see also Arnold, 2000). Some conditions are quite different across these three islands but are not different in general from other Greek islands we visited. While house geckos are relatively rare on Kassos and Sifnos, they are abundant on Anafi (Itescu et al., unpublished). The only other gecko, and potential competitor of the house gecko, Kotschy’s gecko (*Mediodactylus kotschyi*) occurs on all three islands (Anafi, Sifnos and Kassos), and on virtually all other Aegean Sea islands inhabited by *H. turcicus*. Thus character displacement is an unlikely cause of insular gigantism in *H. turcicus*. *Mediodactylus kotschyi* individuals, however, are not particularly large on any of these islands (and in fact are relatively small on Kassos, Itescu et al., 2016), thus these islands do not seem particularly favourable for the evolution of large size of geckos in general. The conditions often associated with the evolution of insular gigantism (Hasegawa, 1994; Meiri, 2007) vary across the three islands: Sifnos and Kassos are inhabited by snakes that are important gecko predators, whereas Anafi is snake-free (as its Greek name – ἀνέω όφεως – ‘snake free’, implies). All three islands harbour other gecko predators such as rats and domestic cats. Release from competition is also an unlikely cause, as the herpetofaunal composition on these three islands is similar to that of many Greek islands (Valakos et al., 2008) where geckos are of average size (Itescu et al., 2016). Neither island enjoys significant amounts of marine subsidies (i.e., food brought in by nesting sea birds), a factor associated with reptile gigantism in many places (Bonnet et al., 2002; Hasegawa, 2003; Keogh et al., 2005), including the Greek Islands (Pafilis et al., 2009).

We are not sure if *H. turcicus* is really native on these islands. On Kassos, for example, some resident lizards may have been introduced recently, based on conversations with locals, who started observing these species only in 2011 (Itescu et al., unpublished). Gigantism in reptiles may well be the result of founder effects, with colonisers being larger than average (Arnold, 2000; see also Cernanský et al., 2015), although in this case, the islands with giant individuals are quite distant from each other, and there are several “normal-sized” population on islands between them (e.g., Sikinos, Folegandros, Karpatrios). Thus, evolution is a more likely explanation. Evolution can be extremely fast in island lizards (e.g., Campbell & Echternacht, 2003; Stueart et al., 2014), and so even if the geckos are not native on these islands, they may well have evolved there. We are nonetheless unable at the moment to explain what selective forces drive the evolution of gigantism in this particular population.

ACKNOWLEDGEMENTS

Specimens were caught under permission from the Greek Ministry of Environment, Energy, and Climate Change (Permit 20305/824). The study was funded by an Israel Science Foundation (ISF) grant #1005/12. We are indebted to Erez Maza for helping with the logistics involved in the field work.
REFERENCES

Accepted: 29 October 2016