Eryx jaculus in Romania

THE Sand boa (Eryx jaculus) is one of the rarest reptiles within the European herpetofauna. It is distributed on the continent only in extreme southern Albania, Macedonia, Greece, on many Aegean islands (especially the Cyclades), in southeastern Romania, southern Bulgaria, as well as in Turkey (Tokar & Obst, 1993). Its occurrence in Romania, as well as the existence of preserved individuals housed in museum collections, is scarcely known. The purpose of this short note is to give an account of the records from the literature, the specimens in museum collections, to comment on the distribution of the species in Romania, and to discuss its conservation status.

REFERENCES

A review of the records of the Sand boa (Eryx jaculus) in Romania

LÁSZLÓ KRECSÁK¹ and ALEXANDRU IFTIME²

¹ Eötvös Loránd University, Department of Systematic Zoology and Ecology, Pázmány P. s. 1/C, H-1117 Budapest, Hungary [corresponding author]
² “Grigore Antipa” National Museum of Natural History, Kiseleff St. nr. 1, 011341 București 2, Romania

ABSTRACT – An account of the records of the Sand boa (Eryx jaculus) in Romania is presented, together with a review of the relevant literature. Preserved specimens in the collection of the “Grigore Antipa” National Museum of Natural History, in Bucharest (MGAB) and Museum of the Martin-Luther University Halle-Wittenberg (IZH) are listed. The distribution of Eryx jaculus and its conservation status in Romania is discussed.

The Sand boa (Eryx jaculus) is one of the rarest reptiles within the European herpetofauna. It is regenerated during ten months in captivity (newt larvae normally show considerable regenerative powers). The black spotting had increased on the head, flanks and tail, but the animal had shown no signs of transformation into the normal post-metamorphic form. The extent of further development of dark pigmentation remains to be seen. Smith (1950) observed that pale neotenic specimens (either Smooth or Palmate newts) were small, whereas adult sized neotenic animals were normally coloured, which is consistent with increasing pigmentation as individuals grow. Whether this animal attains sexual maturity in its current form – hence becoming fully neotenous – also remains to be seen.

ACKNOWLEDGEMENTS
I would like to thank Hopkins Homes for funding the monitoring work and Barry Brookes for providing, and allowing access to, the mitigation site. The pond monitoring work was carried out by Norfolk Wildlife Services, a wildlife consultancy company owned by Norfolk Wildlife Trust. The newt was held in captivity, for purposes of scientific study, under licence from English Nature.

regenerated during ten months in captivity (newt larvae normally show considerable regenerative powers). The black spotting had increased on the head, flanks and tail, but the animal had shown no signs of transformation into the normal post-metamorphic form. The extent of further development of dark pigmentation remains to be seen. Smith (1950) observed that pale neotenic specimens (either Smooth or Palmate newts) were small, whereas adult sized neotenic animals were normally coloured, which is consistent with increasing pigmentation as individuals grow. Whether this animal attains sexual maturity in its current form – hence becoming fully neotenous – also remains to be seen.

ACKNOWLEDGEMENTS
I would like to thank Hopkins Homes for funding the monitoring work and Barry Brookes for providing, and allowing access to, the mitigation site. The pond monitoring work was carried out by Norfolk Wildlife Services, a wildlife consultancy company owned by Norfolk Wildlife Trust. The newt was held in captivity, for purposes of scientific study, under licence from English Nature.
The species occurrence in southeastern areas of Romania, namely Dobrogea, without citing precise locality records, was mentioned several times in the herpetological literature (Schreiber, 1912; Călinescu, 1931; Mertens, 1923; Mertens & Müller, 1940; Mertens & Wermuth, 1960). One individual was collected at Cernavodă, Constanța District, in 1903 by R. Dombrowski and described in detail by Kiritescu (1903). This record was later adopted by Kiritescu (1930), Călinescu (1931), Fuhn & Vancea (1961), Fuhn (1969), Vasiliu & Şova (1968), Otel (1992) and Kotenko et al. (1993). Of these four specimens only two are still present (MGAB 7945; juvenile male; total length 330 mm; discoloured; leg. Dombrowski R. 1903; det. Kiritescu; and MGAB 600015; adult male; total length 480 mm; eviscerated; leg. Dombrowski R. 1903; det. Kiritescu).

In the same year, 1903, Dombrowski collected four specimens at the village of Căpiniş-Giuvegea, Constanța District. These were also described by Kiritescu (1903). His record was adopted by Kiritescu (1930), Călinescu (1931), Fuhn & Vancea (1961), Fuhn (1969), Vasiliu & Şova (1968), Otel (1992) and Kotenko et al. (1993). Of these four specimens only two are still present (MGAB 7945; juvenile male; total length 330 mm; discoloured; leg. Dombrowski R. 1903; det. Kiritescu; and MGAB 600015; adult male; total length 480 mm; eviscerated; leg. Dombrowski R. 1903; det. Kiritescu).

In the same year, 1903, Dombrowski collected four specimens at the village of Căpiniş-Giuvegea, Constanța District. These were also described by Kiritescu (1903). His record was adopted by Kiritescu (1930), Călinescu (1931), Fuhn & Vancea (1961), Fuhn (1969), Vasiliu & Şova (1968), Otel (1992) and Kotenko et al. (1993). Of these four specimens only two are still present (MGAB 7945; juvenile male; total length 330 mm; discoloured; leg. Dombrowski R. 1903; det. Kiritescu; and MGAB 600015; adult male; total length 480 mm; eviscerated; leg. Dombrowski R. 1903; det. Kiritescu).

Nowadays Căpiniş-Giuvegea is part of the town of Băneasa, consequently this population is also probably now extinct.

Some individuals have been found at the village of Cochirileni, Constanța District (Băcescu, 1941). One specimen was illustrated by Fuhn (1964, 1969) and Fuhn & Vancea (1961), and the record was quoted as: M. Băcescu, pers. comm. The record was adopted by Vasiliu & Şova (1968), Otel (1992) and Kotenko et al. (1993). Three specimens from Cochirileni have been conserved and are housed in the Herpetological collection of the “Grigore Antipa” National Museum of Natural History, in București: MGAB 7220; adult male; total length 370 mm; leg., det. et don. M. Băcescu; MGAB 600016; adult male; total length 400 mm; eviscerated and deteriorated; leg., det. et don. M. Băcescu 1935, and MGAB 500841; adult male; total length 400 mm; very well preserved; leg. et don. N. Gavrilescu August 1934, det. M. Băcescu. The last mentioned specimen was depicted in the works by Fuhn (1964, 1969) and Fuhn & Vancea (1961).

The most recent known specimen was found in 1986 between the villages of Beştepe and Mahmudia, in Tulcea District (Zinke & Hielscher, 1990). It was an adult, 526 mm long, female with eight embryos found dead on a road. The record was adopted by Kotenko et al. (1993), Tokar &
Obst (1993) and Iftime (2001). The individual is now preserved in the scientific zoological collection of the Museum of the Martin-Luther University Halle-Wittenberg (IZH). Collection data: IZH R-993; Mahmudia, Rajon Tulcea, Romania; leg. et don. Olaf Zinke, 31st July 1986. This was the northernmost record of the species in Europe.

Tokar & Obst (1993) mentioned the species occurrence at Constanţa, with reference to Călinescu’s 1931 work, but this was merely a misinterpretation of the almost incomprehensible table containing the locality records from this work. Buresch & Zonkow (1934) erroneously marked one locality at the Black Sea side on the map 18 found on page 123 of their work. Vaucher (1975) mentions observing one dead specimen in advanced decomposition at Letea forest, Danube Delta, a record which was not later adopted by subsequent workers; given the circumstances, and the lack of verifiable evidence (the specimen, a photograph) it may likely have been erroneous. The position of the locality records presented above is shown in Figure 1.

Conservation status

Fuhn (1964) drew attention to the necessity of the conservation of the species, and argued that as soon as a locality is found where it may occur in any density, this should be protected as a natural reserve. Also, according to Appendix II of the Bern Convention (Law No. 13/1993) *Eryx jaculus* is a strictly protected species in Romania. Furthermore, it is nominated by the Law 462/2001 (Protected areas and wildlife conservation law) as a species which needs strict protection, by CITES (Annex II) and by EU Habitat and Species Directive, Annex IV (strictly protected).

Cogălniceanu & Venczel (1993) and Gasc *et al.* (1997) considered *Eryx* probably extinct from the country, while Iftime (2001) deemed it to be critically endangered or possibly extinct. It is also included in the Romanian Red Data Book of Vertebrates as critically endangered (Iftime, 2005). Possible threats for the species are urbanization, traffic, expansion of agricultural fields, and pesticide poisoning. As mentioned above, one of the habitats has already been destroyed by the building of the Danube-Black Sea Channel, while another is now a part of an urban area.

The present distribution of *Eryx* in Romania is not known, and further surveys have to be carried out at its known localities, and also in the entire area of Dobrogea. There is a lack of thorough surveys in the area, thus the species may have survived until the present anywhere in the Dobrogea region (with the exception of the Danube-delta). This possibility is further endorsed by the ‘recent’ observation of Zinke & Hielscher (1990).

ACKNOWLEDGEMENTS

Dr. Dietrich Heidecke (IZH) kindly sent us collection data for the specimen collected at Mahmudia. The comments of David Buttle (Norwich, U.K.) highly improved the manuscript.

REFERENCES

Paris: Societas Europaea Herpetologica
Muséum National d’Histoire Naturelle

Iftime, A. (2001). Lista rosie comentată a amfibienilor

TROPIDODRYAS STRIATICEPS (Vinesnake): **REPRODUCTION**. Snakes of the genus Tropidodryas occur exclusively in the Atlantic rainforests of southeastern and southern Brazil (Amaral, 1937; Thomas & Dixon, 1977), and also Bahia state (Argôlo, 1999a,b). Two species are currently recognized: Tropidodryas serra (Schlegel, 1837) and Tropidodryas striaticeps (Cope, 1869), the first found at sea level, and the latter at higher altitudes (Sazima, pers. com.; in Marques, 1998). They have semiarboreal habits and diurnal activity patterns, feeding on lizards, amphibians and rodents (Thomas & Dixon, 1977; Sazima & Puorto, 1993). The young are known to use caudal luring to attract prey (Sazima & Puorto, 1993). This paper presents information on oviposition, hatching, clutch size, relative clutch mass, size and sex ratio in newborn *T. striaticeps*, a snake with broad distributional range in Brazil including ES, MG, PR, RJ, SC e SP states (Amaral, 1937), with a recent record from RS (Puorto & Albuquerque, 2000; Puorto et al., 2001) and BA (Argôlo, 1999b). This species appears on the Red List of Threatened Species of Rio Grande do Sul (www.mat.pucrs.br/livrovermelho/princip.htm).

One female *T. striaticeps* (IB 65086: 840 mm in snout-vent length (SVL), 225 mm in tail length