Infection caused by the chytrid fungus *Batrachochytrium dendrobatidis* (Bd) has been highlighted as one of the suspected drivers of worldwide amphibian declines (Lötters et al., 2010). Globally, there have been calls to map the distribution of *Bd* (http://www.bd-maps.net/) to identify sources and potential sinks for this disease (Skerratt et al., 2007; Gower et al., 2012), and studies based on niche models analysed its potential distribution (Ron, 2005; Rödder et al., 2009; Ghirardi et al., 2011). Actual and potential maps reveal that *Bd* is either absent or its presence has yet to be assessed in a wide area of the Neotropics, including the temperate wetlands from Argentinian Patagonia region.

Patagonia harbours unique ecosystems with high numbers of endemic flora and fauna species (Perotti et al., 2005). The highest diversity of amphibians occurs in north-western Patagonia. The amphibian diversity of the colder Patagonian steppe is lower, but characterised by anurans considered to be important indicators of environmental health (Úbeda & Grigera, 2007) and harbouring the highest proportion of endangered amphibians of Argentina (Vaira et al., 2012). Major threats include habitat alteration, exotic fish introduction and climate change, with the role of emerging infectious disease only assessed in the field for one species (*Atelognathus patagonicus*; Fox et al., 2006).

The first case of chytridiomycosis in Argentina was detected in a specimen of *Leptodactylus latrans* found dead in 2002 (Herrera et al., 2005). Since then, new records of *Bd* have been reported in a growing number of species and regions (Barrionuevo & Mangione, 2006; Arellano et al., 2009; Ghirardi et al., 2009; Gutiérrez et
al., 2010; Delgado et al., 2012; Ghirardi, 2012; Lescano et al., 2013), but a systematic survey for Patagonia was yet lacking. We here report on such a survey, focusing on endemic and endangered species. We discuss potential threats to, and consequences for recently evaluated species (Vaira et al., 2012).

Sampling was carried out between February 2008 and April 2010 (Table 1, Fig. 1). Amphibians were caught by hand and handled using latex rubber examination gloves. Individuals were gently but firmly swabbed 10 times using a sterile polyester-tipped applicator on the ventral surface, hind limbs and interdigital membrane following the techniques of Livo (2004) and Hyatt et al. (2007); tadpoles were swabbed several times at the mouthpart region. We followed sampling protocols from the DAPTF Fieldwork Code of Practice (DAPTF, 1998) and Livo (2004) to avoid possible cross contamination of pathogens between ponds. Each swab was placed in a numbered plastic cryogenic vial for storage. Samples were dried or preserved in ETOH and shipped to a laboratory at the North Carolina State University School of Veterinary Medicine.

Taqman PCR detection for chytrid fungus was performed according to the method of Boyle et al. (2004). Dry swabs were transferred to a sterile 2 ml cryovial (Fisher, USA) and approximately 50 mg of 0.5 mm glass beads (Biospec Products, USA) was added along with 100 ml PrepMan Ultra (Applied Biosystems, California, USA). Following 1 min processing in a Beadbeater (Biospec Products) the vials were placed in a boiling water bath for 10 min, cooled for 1 min and centrifuged at 16,000 x g for 3 min. Ten to 20 ml of sample was removed and stored either at 4°C or frozen at -20°C for later analysis. The reaction mixture was composed of 25 ml Master Mix (Applied Biosystems Taqman Universal PCR Master Mix 4324018l), 4.5 ml forward primer (5’CTCTGATAATACTAGGTCATATGTC), 4.5 ml reverse primer (5’AGGCAAGAGATCCGTTCAAA), 1.25 ml probe (5’6FAMCGAGTCGAACAAAT MGBNFQ), 13.75 ml water, 1 ml DNA template (1:10 dilution of evaluate from swab). Reaction conditions consisted of 95°C for 10 min, 95°C 15s, 60°C 1 min, repeated 49 times. Appropriate positive and negative controls were included with each run. We analysed the cycle threshold (Ct) of positive results and

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Localities</th>
<th>Coordinates</th>
<th>N_{Bd}/N_{total}</th>
<th>Ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alsodes gargola</td>
<td>02/2008</td>
<td>Laguna Toncek (Río Negro province)</td>
<td>71°19’S 41°12’W</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02/2008</td>
<td>Refugio Frey (Río Negro province)</td>
<td>71°18’S 41°13’W</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>Alsodes pehuenche</td>
<td>12/2008</td>
<td>Paso Internacional Pehuenche (Mendoza province)</td>
<td>70°22’53’S 35°58’35’W</td>
<td>2/31</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>04/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurodema thaul</td>
<td>10/2008</td>
<td>Laguna Fantasma, Nahuel Huapi National Park (Río Negro province)</td>
<td>71°27’00’S 41°05’33’W</td>
<td>2/7</td>
<td>40.65±1.06</td>
</tr>
<tr>
<td></td>
<td>09/2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01/2010</td>
<td>Teleférico, Nahuel Huapi National Park (Río Negro province)</td>
<td>71°22’07’S 41°06’47’W</td>
<td>0/2</td>
<td></td>
</tr>
<tr>
<td>Rhinella spinulosa papillosa</td>
<td>09/2009</td>
<td>Route 40 Km 294 (Río Negro province)</td>
<td>71°19’13’S 41°10’51’W</td>
<td>0/7</td>
<td></td>
</tr>
<tr>
<td>Atelognathus patagonicus</td>
<td>03/2008</td>
<td>Laguna Blanca National Park (Neuquén province)</td>
<td>39°00’S 70°23’W</td>
<td>31/48</td>
<td>38.27±3.29</td>
</tr>
<tr>
<td>Pleurodema bufoninum</td>
<td>12/2009</td>
<td>Laguna Blanca National Park (Neuquén province)</td>
<td>39°00’S 70°23’W</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/2008</td>
<td>Ñireco river (Río Negro province)</td>
<td>71°19’13’S 41°10’52’W</td>
<td>0/19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/2009</td>
<td>Route 40 Km 543 (Chubut province)</td>
<td>71°09’50.5’S 42°58’08’W</td>
<td>1/2</td>
<td>38.33</td>
</tr>
<tr>
<td></td>
<td>12/2009</td>
<td>Route 40 Km 166 (Santa Cruz province)</td>
<td>70°26’10’S 48°31’37’W</td>
<td>0/3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>36/122</td>
<td>38.57 ±3.13</td>
</tr>
</tbody>
</table>

Table 1. Species of Patagonian anurans tested for *Bd* and details of sampling sites. N_{Bd}: number of individuals infected by *Bd*. N_{total}: total number of individuals sampled. d: dead or dying individuals. Ct: cycle threshold (mean±standard deviation).
evaluated differences among species with a Kruskal-Wallis test.

We analysed 122 individuals belonging to six anuran species inhabiting different environments from Patagonia (Table 1). We found chytrid skin infection in 29.5% of individuals, corresponding to four species. Cycle threshold for Bd identification were between 33.1 and 44.6, indicating moderate to minimal amounts of Bd DNA in the samples. There were no statistical differences for Ct between species (p=0.759; KW=1.175, Table 1).

Every studied Patagonian region had at least one individual infected by Bd, and 40% of the wetlands sampled contained positive amphibians (Table 1). The mountain toad Rhinella spinulosa papillosa (Bufonidae) was negative for Bd. In the same locality, Pleurodema thaul (Leiuperidae) was Bd positive. In the Patagonian steppe we found a single Bd-positive P. bufoninum, which is currently the most southern record of Bd in the Neotropics. One of the analysed Alsodes pehuencche (Cycloramphidae) individuals was captured and swabbed twice, being Bd-positive in December 2008 and Bd-negative in April 2010; the other positive individual of this species was a tadpole with no clinical signs of infection. Specimens of the sister species A. gargola, inhabiting similar environments, were found dead albeit negative for Bd (Table 1). We found dead and dying individuals of the endemic Atelognathus patagonicus (Ceratophryidae) in endorheic lagoons of the Laguna Blanca National Park, Patagonian steppe (Fig. 2), with all swabbed individuals being Bd positive (Table 1).

Previous work on biological communities in the Argentinean Patagonian wetlands has resulted in a consensus that they are strongly affected by habitat alteration, climate change, contamination, species introduction and emerging diseases (Perotti et al., 2005; Vaira et al., 2012). Considering that amphibians tend to have high endemism in most of the Patagonian wetlands (Ubeda & Grigera, 2007; Vaira et al., 2012), chytridiomycosis has the potential to pose a rather immediate risk to entire species. Given our results, Bd is a potentially severe threat to endemic and endangered frogs of Patagonia.

Different species are however differentially threatened by Bd. Rhinella spinulosa papillosa and P. bufoninum have a wide distribution including protected areas, and are listed as Least Concern at national and international level (Vaira et al., 2012). Following the arguments of Bielby et al. (2008), they have a low probability to decline following a Bd outbreak. Although P. thaul occurs in protected areas and covers further areas in Chile, it occupies only a narrow range along the eastern slopes of the Argentinean Andes (Ferraro & Casagranda, 2009), and is the only aquatic vertebrate inhabiting suburban wetlands of San Carlos de Bariloche, Nahuel Huapi National Park (Jara & Perotti, 2009), where infected specimens were found. Notwithstanding the low probability of decline (0.22) by an outbreak of Bd reported by Bielby et al. (2008), local monitoring and conservation programs for this species should have high priority.

According to Bielby et al. (2008), A. gargola and A. pehuencche have a high probability of Bd-related declines (0.78 and 1, respectively), suggesting that it is necessary to increase survey efforts and long term monitoring programmes. Alsodes gargola inhabits northern Patagonia and is classified as vulnerable, whereas A. pehuencche is listed as endangered (Vaira et al., 2012), inhabiting only a 10 km² area in Argentina strongly affected by human impacts (Corbalán et al., 2010). However, our data imply that low susceptibility cycles of infection and disinfection are possible (such as described in other amphibians, Kriger & Hero, 2007; Briggs et al., 2005). We found substantially higher Bd prevalence for A. patagonicus than reported previously (87.5%, this study, and 25%, Fox et al., 2006), including new locations. We lack histopathological examinations of tissues of diseased individuals to conclusively attribute the observed cases of morbidity and mortality to Bd, and additional samples and long term monitoring are needed. However, our sampling was too limited for robust interpretations about species susceptibilities, despite pronounced differences in Bd prevalence between taxa. This is also supported by the lack of statistical differences between species in the cycle threshold, considering that the results are according to the standard curve for the determination of the pathogen in experimental samples used by Boyle et al. (2004).

Considering the enlarged range of Bd reservoirs and the growing evidence of non-amphibian hosts (i.e.
Johnson & Speare, 2003; Garmyn et al., 2012; Kilburn et al., 2011; Shepard et al., 2012), there is a high probability of dispersal of Bd to distant wetlands. Numerous regions of Argentinian Patagonia remain unsurveyed for Bd, but occurrence in areas adjacent to Patagonia elsewhere in Argentina and Chile (Solís et al., 2010) suggests that this pathogen is locally widespread. More data are essential to evaluate infection rates and risks to amphibian populations inhabiting this region.

Acknowledgements: We thank M.E. Cuello and rangers from Laguna Blanca National Park for assistance during the fieldwork, and the Argentine National Parks Administration (APN) for their assistance during survey and collecting permits. The expert technical assistance of K. Gore and M. Perdue in performing the molecular analysis is appreciated. The research was conducted under Permit number 945 (APN) and samples were transported by Transit Guide 000179 and 000180. This study was supported by grant PIP# 114–200801–00513 from the CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) to MGP.

REFERENCES

conservation of the regional biodiversity. Revista Chilena de Historia Natural 78, 723–737.

Accepted: 6 November 2013