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Brain size variation across the animal kingdom can be 
interpreted as a trade-off between selective advantages of 
higher cognitive ability and the prohibitively high energy 
demands of a large brain. The Expensive-Tissue Hypothesis 
(ETH) predicts that brains are costly, and increases in brain 
size will decrease the size of other metabolically costly 
tissues. Here, we tested this prediction using the anuran 
Rana omeimontis. Brain size was negatively correlated 
with gut length, supporting the ETH. We did not find 
associations between brain size and the size of other 
organs (heart, liver, lungs, kidneys), but found positive 
correlations between brain mass and testes as well as 
limb muscle mass when correcting for the effects of body 
condition. The negative correlation between gut length 
and brain mass suggests that diet quality may play a role 
in the evolution of brain size in R. omeimontis. 
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Brain performance is important for fitness associated 
with social acuity or the ability to manipulate others 

within a group (Allman, 2000). Brain size is often used as a 
proxy of the brain’s evolutionary state of development in 
response to cognitive demands, and varies considerably 
at inter- and intra-specific levels (Striedter, 2005; Gonda 
et al., 2013). There is strong evidence that ecological, 
social and sexually selected pressures affect variation 
in brain size within species (Pitnick et al., 2006; Dunbar 
& Shultz, 2007; Barton & Capellini, 2011). Brains are 
however energetically expensive (Mink et al., 1981), 
and the expensive-tissue hypothesis (ETH) predicts that 
increases in brain size will inevitably decrease the size of 
other metabolically costly tissues (such as the gut, Aiello 
& Wheeler, 1995). Over the past 20 years, most studies 
of the ETH have focused on interspecific comparisons 
across vertebrates (Aiello & Wheeler, 1995; Kaufman 
et al., 2003; Jones & MacLarnon, 2004; Schillaci, 2006; 
Isler & van Schaik, 2006; Pitnick et al., 2006; Lemaǐtre 
et al., 2009; Barrickman & Lin, 2010; Navarrete et al., 
2011). Some studies support the ETH by highlighting 
negative size correlations between the brain and other 

metabolically expensive issues such as gut, pectoral 
muscles and testes (Aiello & Wheeler, 1995; Kaufman et 
al., 2003; Isler & van Schaik, 2006; Pitnick et al., 2006; 
Barrickman & Lin, 2010; Kotrschal et al., 2013). However, 
other studies also found that correlations between brain 
size and other metabolically costly issues were either 
not significant or even positive (Isler & van Schaik, 2006; 
Lemaǐtre et al., 2009; Barrickman & Lin, 2010; Navarrete 
et al., 2011). 

One critical caveat when inferring causal mechanisms 
from comparative studies is that correlations between 
metabolically costly tissues across species may be 
based on mechanisms operating at different scales 
(Agrawal et al., 2010). Intraspecific studies of relative 
tissue investment in a single species can circumvent this 
problem (see discussion in Warren & Iglesias, 2012). 
The Omei Wood Frog (Rana omeimontis) is an anuran 
which devotes a large amount of effort to territory 
maintenance and defence (Liu et al., 2012a, b), which 
should make it a good model organism to test the ETH 
at an interspecific level. Brain, heart, lungs, kidneys, liver, 
testes and gut tissues have generally been recognised as 
being metabolically costly (Aiello & Wheeler, 1995; Isler 
& van Schaik, 2006; Barrickman & Lin, 2010; Navarrete 
et al., 2011; Warren & Iglesias, 2012). Although muscle 
tissue is not as expensive in energy consumption per 
unit mass as visceral organs (Caton et al., 2000), limb 
muscles in anurans makes up a large proportion of body 
mass and consume a large proportion of the available 
energy during locomotion (Duellman & Trueb, 1986). The 
aim of this study is to test the predictions of the ETH by 
investigating whether brain mass correlates negatively 
with other costly organs in R. omeimontis. 

Fieldwork was conducted in Caiba town of Yibin city 
(28°47’ N, 104°33’ E, 281 m a.s.l.), Sichuan, China. A 
total of 63 males were caught from artificial ponds by 
hand at night during the breeding season in 2011. The 
collection of frogs in the study was permitted by the 
Forestry Bureau of Yibin city, following all the applicable 
instructions of the Animal Care Guidelines in China. Frogs 
were kept individually in a rectangular tank (0.5×0.4×0.4 
m) before being anesthetised with benzocaine and then 
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killed by double-pithing and preserved in 10% formalin in 
a phosphate buffer for tissue fixation and preservation. 
After one month, we measured body size (snout-vent 
length, SVL) to the nearest 0.01 mm with a caliper, and 
body mass to the nearest 0.1 mg with an electronic 
balance. Each frog was dissected and all major organs 
(brain, heart, lungs, kidneys, liver, testes and gut tissues) 
and limb muscles were removed. We then weighed and 
measured the brain, heart, lungs, kidneys, liver, testes 
and limb muscles (to the nearest 0.1 mg) as above. 

All variables were log-transformed for parametric 
statistical tests (Type III sums of squares tests conducted 
with SPSS v.17.0). Correlations between organs were 
analysed using residuals from log-log regressions of brain, 
heart, lungs, kidneys, liver, limb muscles, testes mass and 
gut length on body mass. We used linear regression to 
estimate the correlations and 95% confidence intervals. 
Individual condition was estimated using the residuals 
from a log-log regression of body mass on SVL. We 
used least-squares linear regressions to test whether 
investment in any of the focal tissues was affected by 
individual condition. We then used partial correlation 
analysis to test for correlations between residual brain 
mass and each of the focal tissue residuals by treating 
body condition as covariate; this test can control for 
the possibility that energetic constraints are more 
pronounced in individuals with poor condition (Warren 
& Iglesias, 2012). 

Brain mass residuals were negatively correlated with 
gut length residuals, and positively correlated with 
residuals of heart, lungs, testes and limb-muscle mass 
(Table 1). We did not find significant correlations between 
brain mass residuals and residuals of liver and kidney 
mass (Table 1). Correlations between other organs were 
not significant except for negative correlations between 
gut length residuals and residuals of testes, heart and 
muscle mass (Fig. 1).

Body condition was negatively correlated with the 
residuals of limb muscles and testes mass (Table 1). 
Conversely, there was a positive correlation between 
body condition and gut length residuals. Moreover, body 
condition was not correlated with residuals of liver, kidney 
and lung mass (Table 1), as well as brain mass residuals 
(β=-0.244, p=0.054). However, when controlling for the 
effect of body condition by using partial correlation 

analysis, brain mass residuals were negatively correlated 
with residuals of gut length (r=-0.574, df=59, p<0.001) 
and positively correlated with residuals of limb muscle 
and testes mass (Fig. 2; limb muscles, r=0.576, df=59, 
p<0.001; testes, r=0.445, df=59, p<0.001).  

That physiological constraints force organisms to 
balance investments between metabolically costly tissues 
is a fundamental hypothesis in comparative biology 
(Isler & van Schaik, 2006). Consistent with the ETH, we 
found that brain mass and gut length were negatively 
correlated in R. omeimontis. Such a relationship was 
previously reported across a range of taxa (primates: 
Aiello & Wheeler, 1995; Aiello et al., 2001; Pfefferle et al., 
2011; Barrickman & Lin, 2010; fish: Kaufman et al., 2003; 
birds: Isler & van Schaik, 2006; cattle: Mau et al., 2009), 
but other studies also failed to reveal this relationship 
(bats: Jones & MacLarnon, 2004, mammals: Navarrete 
et al., 2011). High diet quality is associated with small 
guts (MacLarnon et al., 1986), and in birds is linked 
to large brains (Isler & van Schaik, 2006). Consistent 
with the ETH, our study suggests that individuals with 
larger brains might make use of better-quality food and 
therefore develop smaller guts. 

Comparative analyses of the trade-offs between 
metabolically costly tissues demonstrate negative 
correlations between investment in testes and brains 
in bats (Pitnick et al., 2006; Lemaǐtre et al., 2009), 
whereas no correlations are observed in other mammals 
(Schillaci, 2006; Lemaǐtre et al., 2009; Bordes et al., 
2011) and fish (Liu et al., 2014). However, contrary to 

Table 1. Regressions of brain mass residuals and body condition on other organ size residuals in Rana omeimontis. 
Coefficient estimates from regressions are given with 95% CI in brackets, and Beta, adjusted r2 and p values associated 
with each regression are also provided.

Organ size    Brain mass   Body condition

Estimates [±95% CI] β p Estimates [±95% CI] β p

Heart 0.227[0.069,0.386] 0.347 0.006 -0.070[-0.256,0.117] -0.096 0.453

Lungs 0.157[0.042,0.273] 0.329 0.008 -0.062[-0.195,0.072] -0.117 0.359

Liver -0.072[-0.344,0.200] -0.068 0.598 0.116[-0.182,0.413] 0.099 0.440

Kidneys 0.080[-0.066,0.225] 0.138 0.279 -0.012[-0.174,0.149] -0.019 0.881

Gut -0.483[-0.748,-0.219] -0.424 0.001 0.386[0.082, 0.691] 0.309 0.014

Testes 0.122[0.067,0.178] 0.495 <0.001 -0.119[-0.182,-0.057] -0.443 <0.001

Limb muscles 0.441[0.177,0.704] 0.394 0.001 -0.339[-0.641,-0.036] -0.276 0.029

Fig. 1. Correlations between the sizes of other expensive 
organs in Rana omeimontis.
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the predictions of the ETH, we find that the increase of 
brain size is accompanied by an increase in testes size. 
Muscle tissue can consume a considerable proportion 
of the organisms’ energy even when at rest (Aiello & 
Wheeler, 1995), and we also found a positive correlation 
between brain mass and limb muscles mass. For anurans, 
locomotory capability is linked with the ability to search 
for mates and high-quality diet, as well as predator 
avoidance (Duellman & Trueb, 1986). Hence, a positive 
correlation between brain mass and limb muscle mass 
in R. omeimontis might reflect the ability of perception 
alongside higher capabilities for locomotion. This 
contrasts the trade-off between muscles mass and brain 
mass in birds which are characterised by weight-limited, 
energy-demanding flight styles (Isler & van Schaik, 2006). 

Organs that are of critical importance to the functioning 
of the organism may vary in size and metabolic activity 
during different life-cycle periods (Piersma, 2002). 
Similar to the results of Navarrete et al. (2011), we fail 
to find correlations between brain mass and heart, liver, 
kidney or lung mass. This may be explained by the fact 
that the energetic costs of one tissue may be reflected 
in investment in all other costly tissues combined rather 
than a specific tissue (Lemaǐtre et al., 2009). 
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