Diet and tadpole transportation in the poison dart frog
Ameerega trivittata (Anura, Dendrobatidae)

Luciana Frazão Luiz¹, Felipe Andrés Leon Contrera² & Selvino Neckel-Oliveira³

1Universidade Federal do Amazonas (UFAM), Instituto de Ciências Biológicas, Departamento de Biologia, Laboratório de Evolução e Genética Animal, Av. General Rodrigo Octávio Jordão Ramos, 3000, CEP 69077-000 Manaus, AM, Brasil
2Instituto de Ciências Biológicas, Laboratório de Biologia e Ecologia de Abelhas, Universidade Federal do Pará, Brasil
3Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Brasil

Diet and transportation of tadpoles by *Ameerega trivittata* was studied in the eastern Amazon basin. A total of 56 specimens (48 males and 8 females) were sampled, 44 out of which had quantifiable stomach contents. Forty males were recorded to carry between 1 and 18 tadpoles. Forty pools were measured and sampled for tadpoles and odonate naiads, a putative tadpole predator. Myrmicine ants predominated in the diet of males, putatively leading to higher concentrations of alkaloids beneficial during tadpole transport. No relationship was found between male size and the number or size of tadpoles transported, and between pool size and tadpole abundance. The number of tadpoles in the pools was negatively related to the abundance of odonate naiads.

Key words: dendrobatid, flushing, pools, predation, Odonata

While parental care is beneficial for offspring, it usually involves costs for the parents (Trivers, 1972; Clutton-Brock, 1991; Gross, 2005; Kidd et al., 2012). In neotropical dendrobatids (Anura, Dendrobatidae), complex parental care makes reproduction relatively costly (Trivers, 1972; Summers, 1992; Duellman & Trueb, 1994). The survival of tadpoles depends on their successful transfer to pools, as well as pool characteristics such as size (Peltzer et al., 2003) and the presence of predators (Azevedo-Ramos et al., 1992; Hero et al., 1998; Rodrigues et al., 2010). Diet plays a further role in providing parental care. Dendrobatids are considered ant-feeding specialists (Toft, 1980), and their diet appears to provide the alkaloids used for defence against predators (Daly et al., 1987). The study was conducted in Juruti municipality (02°09'09" S, 56°05'42" W), eastern Amazonian basin, Brazil. The climate of the region is tropical moist (Peel et al., 2007). Temperatures range between 22.5°C and 31°C, with annual precipitation of about 2200 mm. The rainy season lasts from February to April, while the driest season is from August to October (Moraes et al., 2005).

Sampling was carried out from January to March 2011, covering 58 days of daily fieldwork with an effort of 6 to 8 hours per day. All specimens were captured, measured (snout-vent length, SVL) and weighed. Only adults (≥35 mm, Roithmair, 1994) were considered. Stomach contents were extracted using the flushing method (Legler & Sullivan, 1979; Leclerc & Courtois, 1993; Born et al., 2010), preserved in 70% alcohol and identified to the Order level. Tadpole-carrying males were captured when they were near to a pool. The number of tadpoles was more yellow than females, possibly a favourable trait because males are exposed to predators for longer periods during tadpole transport (Rojas & Endler, 2013).

Here, we studied the composition of the diet and tadpole transportation of *Ameerega trivittata* in the eastern Amazon basin. We addressed three questions: (i) Do males and females differ in diet composition? We expect that males, the sex which performs tadpole transportation in this species, consume larger quantities of ants in comparison to females. (ii) Is the number and volume of tadpoles transported by a male related to male body size? (iii) Is the number of tadpoles in a pool influenced by the surface area and the presence of odonate naiads? We predict that that tadpoles will be more abundant in larger water bodies an in pool with less odonate naiads.

Ameerega trivittata (the three-striped poison frog) is a diurnal dendrobatid species (Grant et al., 2006) inhabiting forest floors in Venezuela, Guyana, Suriname, and the Amazonian basin of Brazil, Bolivia, Colombia and Peru (Frost, 2014). They are characterised by a black dorsum with bright yellow to green marbling (Roithmair, 1994) and a toxic skin (Daly et al., 1987). The study was conducted in Juruti municipality (02°09'09" S, 56°05'42" W), eastern Amazonian basin, Brazil. The climate of the region is tropical moist (Peel et al., 2007). Temperatures range between 22.5°C and 31°C, with annual precipitation of about 2200 mm. The rainy season lasts from February to April, while the driest season is from August to October (Moraes et al., 2005).

Correspondence: Luciana Frazão Luiz (luca.frazao@gmail.com)
counted, and their size measured (body length × width × height). After measurements, males were returned to the site of capture and tadpoles were released in the nearest pool. The size of 40 representative pools was estimated by calculating the area of the ellipse as $A = \pi ab$, where a=the major semi-axis of the ellipse (=length) and b=minor semi-axis of the ellipse (=width). The number tadpoles and odonate naiad nymphs in these pools were recorded by sweeping the whole pool with a 3-mm sieve mesh, including the substrate and the leaf litter of the bottom (Gascon, 1991; Shaffer et al., 1994). Each pool was sampled for at least 30 minutes, and sampling was terminated when no specimens (tadpoles or odonate naiads) were found in a 5–10min interval (Rodrigues et al., 2010).

The influence of sex on diet composition was tested using the simplified Morisita-Horn index of overlap (Horn, 1966):

$$CH = \frac{2 \sum P_{ij} \times P_{ik}}{\left[\left(\sum P_{ij}^2/N_j \right) + \left(\sum P_{ik}^2/N_k \right) \right] \times N_j \times N_k}$$

where CH=Simplified Morisita-Horn index, P_{ij}=the proportion of item i in the total number of items ingested by the females, P_{ik}=the proportion of item i in the total number of items ingested by the males, n=total number of items used. This index is used to quantify overlap in diets, and varies from 0 to 1, with higher values indicating a higher degree of overlap. This index was chosen because it is applicable to varying sample sizes, and because of its wide use (Wolda, 1981; Marshal et al., 2012; Preti et al., 2012). Stomach contents were analysed using the dominance index (Benneman et al. 2006). Here, dominance is related to the number of times that a given item is most common, expressed as a percentage of the total number of stomachs analysed. The frequency of occurrence ($FoR\%)$ was also calculated for each food item, expressed as the percentage of the samples in which the item was observed. A linear regression was used to determine whether abundance and volume of tadpoles is related to male body size (SVL) and a body condition index (BCI, Anderson & Neumann, 1996). A multiple linear regression was used to test whether abundance of tadpoles in pools is related to pool size and abundance of odonate naiads. Pool area and tadpole abundance values were transformed ($\log_{10}(N+1)$) to conform with

<table>
<thead>
<tr>
<th>Prey Category</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FoA</td>
<td>$FoR%$</td>
</tr>
<tr>
<td>Acari</td>
<td>4</td>
<td>10.81</td>
</tr>
<tr>
<td>Araneae</td>
<td>5</td>
<td>13.51</td>
</tr>
<tr>
<td>Chilopoda</td>
<td>1</td>
<td>2.70</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>24</td>
<td>64.86</td>
</tr>
<tr>
<td>Diptera</td>
<td>4</td>
<td>10.81</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>1</td>
<td>2.70</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>35</td>
<td>94.59</td>
</tr>
<tr>
<td>Isopoda</td>
<td>3</td>
<td>8.11</td>
</tr>
<tr>
<td>Isoptera</td>
<td>19</td>
<td>51.35</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>1</td>
<td>2.70</td>
</tr>
<tr>
<td>Opiliones</td>
<td>1</td>
<td>2.70</td>
</tr>
<tr>
<td>Stones</td>
<td>3</td>
<td>8.11</td>
</tr>
<tr>
<td>Thysanoptera</td>
<td>1</td>
<td>2.70</td>
</tr>
<tr>
<td>Leaves</td>
<td>20</td>
<td>54.05</td>
</tr>
</tbody>
</table>

Table 1. Diet of males ($n=48$) and females ($n=8$) *Ameerega trivittata* on the municipality of Juruti, Pará, estimated by the flushing method. FoA - absolute frequency of occurrence; $FoR\%$ - relative frequency of occurrence; % D - Dominance. The most dominant orders are highlighted in italic.
a normal distribution. All analyses were conducted using the R v.2.13 software (R Development Core Team 2011).

In total, 48 males (SVL mean=38.0±0.3 mm) and 8 females (SVL mean=44.3±1.4 mm) were captured. Fourteen different items were identified in the stomach contents of 44 specimens (Table 1), and all of them were found in the stomachs of both sexes. There was an overlap of 72% in the diets between sexes (Morisita-Horn index: CH=0.72). The most abundant order in the male diet was Hymenoptera (64.86%), whereas Isoptera (71.43%) was predominant in the female diet. Forty males were found carrying between 1 and 18 tadpoles (males SVL: 37.2±1.95 mm, mass: 4.41±0.78 g, n=10.8±3.2 tadpoles with mean sizes of 6.0±2.0mm). Neither abundance (p=0.45, SE=28.60, β=0.12) nor size of the tadpoles (p=0.36, SE=0.19, β=0.07) were related to the size of the male transporters or with BCI (r²=0.03, y=0.12x+1.04). The 40 pools had a mean area of 2.12±2.57 m² and contained between 0 and 16 odonata nymphs (mean=6.85±4.9) and 8 to 533 A. trivittata tadpoles (mean=76.65±96.7). The variation in the abundance of tadpoles in the pools was explained by the model (r²=0.25, F [1,39]=5.6, p=0.005). Partial regressions revealed a negative relationship between tadpole and abundance of naiads (r²=-0.22, F [1,39]=10.58, p=0.002; Fig. 1), without any effect of pool area (r²=0.001, F [1,39]=0.05, p=0.83).

The diet of A. trivittata was mainly composed of social insects. Behavioural differences between sexes may be associated with the partitioning of feeding resources within the population. A predominance of hymenopteran prey in male diet and isopterans in female diet was previously recorded in A. braccata (Forti et al., 2011), a species for which males are also responsible for tadpole transport (Uetanabaro et al., 2008). Donnelly (1991) also found for O. pumilio that the tadpole-carrying sex (females) consumed higher quantities of ants, putatively resulting in higher levels of alkaloids (Saporito et al., 2006). However, other pool variables such as depth and bottom litter may also influence the abundance of tadpoles (Sanderson et al., 2006) and were not measured in this study.

Acknowledgements: We thank R. Salomão (Goeldi Museum), for help with logistics and infrastructure at the study site. We are also grateful to N. Benone for help with the identification of invertebrates. The Brazilian National Council for Scientific and Technological Development (CNPq) provided financial support for the first author. The experimental procedures were conducted according to the requirements of current Brazilian legislation and were authorised by the federal environment institute (IBAMA) through special license number 02180.001126/2007-12.

REFERENCES

Accepted: 8 November 2014