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Sexual dimorphism is a widespread phenomenon throughout the animal kingdom and a key topic in evolutionary biology. In 
this study, we quantified patterns of sexual dimorphism in two hynobiid salamanders (Hynobius leechii and Salamandrella 
keyserlingii) from Chinese populations. Sexual size dimorphism did not occur in either species, despite differences in body 
shape traits. Likely related to fecundity selection, females have relatively longer trunks in both species. Female S. keyserlingii 
have larger heads likely due to reproductive investment and ecological selection, whereas larger forelimb and hindlimb width 
in male H. leechii may be related to reproductive behaviour. 
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INTRODUCTION

Sexual dimorphism involves phenotypic differences 
between males and females within a given species, 

and is a widespread phenomenon throughout the 
animal kingdom believed to be the result of complex 
selective forces (Andersson, 1994; Fairbairn, 1997; Cox 
et al., 2007; Kupfer, 2007). Fecundity selection promotes 
morphological features which improve reproductive 
output such as higher abdominal volume of females 
(Hedrick & Temeles, 1989; Griffith, 1990; Jockusch, 1997). 
Sexual selection favours morphological traits which allow 
an individual to gain more or better mating partners 
(Darwin, 1871; Andersson, 1994). Ecological selection 
favours morphological characteristics which maximise 
survival and growth (Slatkin, 1984; Shine, 1989; Fontenot 
& Seigel, 2008). 

In amphibians, sexual dimorphism occurs in all major 
groups (Kupfer, 2007), and for example Shine (1979) 
reported that females are larger than males in about 
90% of 589 anurans and 61% of 79 salamanders. The 
evolution of sexual dimorphism in salamanders has 
attracted considerable interest (Halliday & Arano, 1991; 
Kalezic et al., 1992; Andersson, 1994; Malmgren & 
Thollesson, 1999; Serra-Cobo et al., 2000; Ivanović et al., 
2008). Studies on sexual dimorphism in urodeles found 
sex-specific throat colouration (Hasumi, 2001), dentition 
(Ehmcke & Clemen, 2000; Greven et al., 2004; Clemen 
& Greven, 2009), volume of the vomeronasal organ 
(Woodley, 2007), skull geometry (Ivanović & Kalezić, 
2012), dorsal body pigmentation (Pokhrel et al., 2013), 
number of tail vertebrae (Ficetola et al., 2013; Colleoni et 

al., 2014), visceral organ mass and hematology (Finkler, 
2013) and body size and shape (Romano et al., 2009; 
Seglie et al., 2010; Bakkegard & Rhea, 2012; Alcorn et al., 
2013; Colleoni et al., 2014; Reinhard et al., 2015; Amat 
et al., 2015). 

The family Hynobiidae, consisting of the subfamilies 
Hynobiinae and Onychodactylinae (Dubois & Raffaëlli, 
2012), has 66 recognised species (Frost, 2016). China 
represents its main distribution, and is inhabited by 28 
species belonging to eight genera. In the present study, 
we describe the sexual dimorphism of two hynobiid 
salamanders from Chinese populations, and discuss the 
results in the light of existing evolutionary concepts.

MATERIALS AND METHODS

Study specimens and samples
Individuals from two species of hynobiid salamanders 
(Hynobius leechii Boulenger, 1887 and Salamandrella 
keyserlingii Dybowski, 1870) were collected from 
indigenous Chinese populations and closely examined. 
Hynobius leechii is distributed in Korea and northeastern 
China (Liaoning, Jilin, and Heilongjiang Provinces); S. 
keyserlingii has a wide distribution range, including 
China, Japan, Korea, Democratic People’s Republic of 
Korea, Republic of Mongolia and the Russian Federation. 
Both salamanders are largely terrestrial and in areas of 
sympatry breed in shared lentic pools. A total of 81 adults 
preserved in 10% formalin were examined (H. leechii: 19 
females, 22 males; S. keyserlingii: 14 females, 26 males, 
Appendix 1). Specimens were sexed by inspection of the 
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gonads through a small ventro-lateral incision. Vouchers 
are deposited at the Henan University of Science and 
Technology Museum (HNUSTM) and the Museum of 
Chengdu Institute of Biology (CIB) at the Chinese Academy 
of Sciences (CAS). To quantify intersexual morphological 
differences, eleven morphometric characters were 
analysed (Table 1). All measurements were acquired to 
the nearest 0.01 mm by Jianli Xiong using digital callipers. 

Statistical analysis 
All characters measured were tested for normality 
(Kolmogorov-Smirnov test) before analyses. Sexual 
dimorphism in SVL was analysed with t-tests for 
independent samples, and SVL was then excluded from 
subsequent analyses due to a high collinearity with 
other considered variables (e.g. Romano et al., 2009). 
To minimise deviations from normality and distortion 
caused by allometric relationships, all data were log10-
transformed, and tested for normality (Kolmogorov-
Smirnov test) and homogeneity of variances (Levene’s 

Abbreviations  Variable definition 

SVL snout-vent length, from the tip of snout to the posterior margin of the cloaca

HL head length, from the tip of the snout to the gular fold

HW head width, width of the head at its widest point

HH head height, height of the head at its highest point

TL tail length, from the posterior margin of the cloaca to the tip of the tail

TH tail height, height of the tail at its highest point

FLL forelimb length, from the base of the forelimb to the tip of the longest finger

HLL hindlimb length, from the base of the hindlimb to the tip of the longest toe

AGS distance between axilla and groin, the space between the posterior base of the forelimb and the anterior 
base of the hindlimb

FLW forelimb width, the maximum width of the forelimb

HLW hindlimb width, the maximum width of the hindlimb

Table 1. Definitions of the morphological character set and abbreviations.

 
Variables Hynobius leechii Salamandrella keyserlingii

Female(n=19) Male(n=22) Female(n=14) Male(n=26)

mean±S.D range mean±S.D range mean±S.D Range mean±S.D range

Snout-vent 
length

64.66±5.81 54.76-73.49 62.61±3.68 55.87-68.41 59.63±3.26 53.78-65.41 59.13±4.06 52.20-65.77

Head length 14.46±1.09 11.19-15.61 14.77±1.13 13.12-17.16 14.04±0.80 12.56-15.17 14.77±1.38 12.97-19.66

Head width 10.61±1.14 8.7-13.0 10.85±1.17 9.40-13.40 10.04±0.68 8.88-11.58 11.68±1.59 9.93-16.47

Head height 6.69±1.16 4.60-8.59 6.78±0.87 5.73-8.86 5.61±0.43 4.71-6.08 6.54±1.39 5.36-11.22

Tail length 42.93±5.03 33.64-52.53 44.60±5.49 37.46-55.31 49.09±6.75 39.83-63.06 56.44±6.84 44.44-69.17

Tail height 5.43±0.93 3.84-7.04 6.01±1.21 3.96-8.02 6.84±0.74 6.03-8.88 8.35±0.99 6.58-11.85

Length of 
forelimb

14.06±1.64 11.46-16.19 12.09±1.59 9.09-15.25 13.76±1.29 12.02-16.60 15.14±0.98 12.45-17.70

Length of 
hindlimb

17.23±1.38 15.2-19.90 16.60±1.25 14.90-19.20 13.30±1.06 10.29-14.64 15.21±1.06 12.41-16.58

Space 
between axilla 
and groin

30.79±2.83 25.83-37.95 28.27±1.71 24.48-31.29 30.78±4.08 25.94-39.34 28.92±3.15 23.95-38.38

Forelimb 
width

2.86±0.58 1.60-3.74 3.58±0.64 2.42-4.96 3.11±0.34 2.54-3.84 3.54±0.35 2.93-4.18

Hindlimb 
width

4.18±0.47 3.44-5.07 4.68±0.66 3.34-6.34 4.15±0.49 3.09-4.98 4.46±0.57 3.37-5.55

Table 2. Descriptive statistics of original morphometric characters (mm) in females and males of Hynobius leechii and 
Salamandrella keyserlingii. 
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test). Since the variances were homogeneous, a principal 
component analysis (PCA) was performed. The first 
principal component (PC1) is generally interpreted as 
an axis of body size variation (Reyment et al., 1984; 
Bookstein, 1985), and relative shape differences are 
expressed in subsequent axes (Schäuble, 2004). Next, 
a univariate analysis of covariance (ANCOVA) was 
conducted with sex as a factor and the PC1 score as a 
covariate for each morphological variable independently 
(following Guillaumet et al., 2005; Romano et al., 2009). 
This allowed for the determination of the variables that 
differed between males and females. Data analysis was 
conducted using SPSS version 17.0 (SPSS Inc., Chicago). 
Values were presented as mean±standard deviation, and 
the significance level was set at α=0.05.

RESULTS

Mean SVL of females was higher than SVL for males in 
both species, at however non-significant differences 
(H. leechii: t=1.326, df=29.580, p>0.05; S. keyserlingii: 
t=0.389, df=38, p>0.05); measurements of the other 
traits are listed in Table 2. In both species, three principal 
components were extracted (Table 3). PC1 described the 
largest proportion of overall variation (50.96% in H. leechii 
and 43.23% in S. keyserlingii), and all original variables 
loaded positively onto this component. Therefore, the 
individual scores on PC1 were used to estimate the 
differences in overall body size. Other axes explained 
49.04% and 56.77% of the variances in H. leechii and S. 
keyserlingii, respectively, and the factor scores for these 
components were retained as being representative of 
body shape.

Differences in shape between the sexes were further 
revealed by the applied ANCOVA (Table 3). In both species, 
the interaction term of sex and PC1 was not significant 
and removed from the model for all variables. In H. 
leechii, FLL and AGS was significantly higher for females, 
and FLW and HLW were higher in males. In S. keyserlingii, 

HL and AGS were significantly larger in females than in 
males (see Table 1 for trait abbreviations). 

DISCUSSION

For both hynobiid salamanders, we revealed sexual size 
dimorphism in body shape without marked differences in 
body size. Selection can drive the evolution of differences 
in a wide variety of characteristics, and the differential 
sexual shape dimorphism among the studied species is 
likely caused by different selective forces (Alcorn et al., 
2013; Colleoni et al., 2014). Differences in trunk length 
were found for both species, in addition to head shape 
dimorphism in S. keyserlingii and limb shape dimorphism 
in H. leechi. 

A female-biased dimorphism in trunk length has 
been previously reported in other salamanders (e.g., 
Plethodon kentucki, Marvin, 2009; S. salamandra, Labus 
et al., 2013; Salamandrina perspicillata, Romano et al., 
2009; Neurergus microspilotus, Rastegar-Pouyani, 2013), 
and is likely linked to fecundity selection (Hedrick & 
Temeles, 1989; Jockusch, 1997). Trunk length is directly 
correlated with the length of the pleuroperitoneal cavity 
which provides space for eggs or offspring; a longer trunk 
can also increase the ability for fat storage to enhance 
reproductive success (Shine, 1979; Kalezic et al., 1992; 
Marvin, 2009).

The observed female-biased sexual dimorphism in 
head size for S. keyserlingii may be due to a combination 
of fecundity and ecological selection (Zhang et al., 2014). 
Sexual selection often favours males with larger heads 
during male-male competition (e.g., Fauth & Resetarits, 
1999; Bovero et al., 2003; Marvin, 2009). However, a 
larger head can also facilitate an increased food intake 
advantageous for egg production (Selander, 1972; Shine, 
1979, 1989; Malmgren & Thollensen, 1999; Romano et al., 
2012). Ecological selection also favours sexual differences 
in diet (Cooper & Vitt, 1989; Fauth & Resetarits, 1999; 
Serra-Cobo et al., 2000; Bovero et al., 2003; Fontenot 

Variables Hynobius leechii Salamandrella keyserlingii

PC1 PC2 PC3 F p-value PC1 PC2 PC3 F p-value

Head length 0.646 -0.025 0.486 0.129 0.722 0.670 -0.008 0.545 5.609 0.023

Head width 0.918 0.033 -0.136 0.205 0.654 0.757 0.450 0.178 0.025 0.875

Head height 0.874 0.058 -0.131 0.918 0.344 0.627 0.607 0.270 0.190 0.666

Tail length 0.898 -0.009 -0.218 0.008 0.928 0.628 0.014 -0.632 0.145 0.705

Tail height 0.849 -0.261 0.108 1.132 0.294 0.787 -0.125 0.034 2.351 0.134

Length of forelimb 0.312 0.804 -0.079 23.163 0.000 0.751 -0.235 -0.405 0.001 0.980

Length of hindlimb 0.323 0.396 0.771 3.969 0.054 0.745 0.100 -0.359 2.694 0.109

Space between axilla and groin 0.470 0.733 -0.298 26.489 0.000 0.092 0.840 0.041 9.282 0.004

Forelimb width 0.746 -0.372 -0.070 24.020 0.000 0.736 -0.388 0.085 0.014 0.907

Hindlimb width 0.752 -0.372 -0.003 9.900 0.003 0.476 -0.663 0.433 0.469 0.498

Eigenvalue 5.096 1.691 1.025 4.323 1.948 1.292

Proportion 50.961 67.871 78.126 43.226 62.706 75.626

Table 3. Factor loadings for the principal components (PC; eigenvectors), eigenvalues and proportion of total variance 
described by the first three components obtained from PCA on a correlation matrix, and results of ANCOVA with PC1 
scores as covariate tests for differences in morphological variables. All variables are log-transformed. Significant values 
in italic.
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& Seigel, 2008; Seglie et al., 2010), and a female-biased 
sexual dimorphism in head size has previously been 
observed in other salamander species (S. perspicillata, 
Romano et al., 2009; Tylototriton verrucosus, Seglie et al., 
2010; N. microspilotus, Rastegar-Pouyani et al., 2013). 

Sexual dimorphism in limb size is widespread in 
salamanders, in most cases involving longer and 
more robust limbs for males compared to females (E. 
platycephalus, Bovero et al., 2003; Triturus cristatus 
and Lissotriton vulgaris, Malmgren & Tholleson, 1999; 
E. asper, Seglie et al., 2010; S. salamandra, Labus et al., 
2013). The mating sequence of H. leechii involves the 
use of forelimbs as well as hindlimbs by males, and more 
robust limbs likely enhance the process of insemination 
(Park et al., 1996; Park and Park, 2000). Reinhard et al. 
(2015) revealed that enlarged male forelimbs can be 
attributed to courtship behaviour, whereas in other cases 
its functional significance is unknown (Romano et al., 
2009; Rastegar-Pouyani et al., 2013). 

Geographic differences in sexual dimorphism can be 
caused by differential ecological constraints on sexual 
selection or competition (Selander, 1966; Dobson and 
Wigginton, 1996; Frafjord and Stevy, 1998). Park et al. 
(1996) found sexual dimorphism in SVL for H. leechii from 
South Korea, however without noticeable differences in 
head width and tail depth. Hasumi (2010) reported that 
female S. keyserlingii from northern Japan possessed 
wider heads, and males possessed longer tails. The 
results reported here are partially consistent with those 
of Park et al. (1996) and differ from Hasumi (2010), 
providing evidence for geographical variation in sexual 
dimorphism in both studied species (see also Serra-Cobo 
et al., 2000; Angelini et al., 2015). 
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APPENDIX

Appendix 1. Specimens examined.

Hynobius leechii N=41
HNUSTM1005003, HNUSTM1005046 - HNUSTM1005050, HNUSTM1005052 - HNUSTM1005053, HNUSTM1005062 
- HNUSTM1005069, HNUSTM1005081 - HNUSTM1005083, HNUSTM1005086 - HNUSTM1005093, HNUSTM1005101 
- HNUSTM1005102, HNUSTM1005104 - HNUSTM1005111, CIB-XM2072 - CIB-XM2073, CIB-XM2098, CIB-XM2136, 
Lushuihe, Fusong County, Jilin Province, China in May 2010.

Salamandrella keyserlingii N=40
CIB18372 – CIB18382, CIB18384 - CIB18396, CIB18398 - CIB18407, CIB18409 - CIB18414, Baihe, Antu County, Jilin 
Province, China in April 1994.


