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The yellow spotted mountain newt (Neurergus derjugini) is a critically endangered species restricted to fragmented habitats in 
highland streams of the middle Zagros Mountain in Iran and Iraq.  We examined the species phylogeography by investigating 
sequences of a mitochondrial fragment of the ND2 gene for 77 individuals from 15 locations throughout the species known 
distribution. We found relatively high haplotype diversity (0.82 ± 0.025) but low nucleotide diversity (0.0038 ± 0.00022) 
across all populations. Phylogenetic trees supported monophyly, and the segregation of haplotypes was concordant with 
the haplotype network. We found a significant correlation between geographical and genetic distances among populations 
(r = 0.54, P ˂ 0.01), suggesting restricted gene flow.  Molecular dating suggested that haplogroups diverged during the early 
or middle Pleistocene. Bayesian skyline plot provided evidence for an expansion of populations during the Pleistocene-
Holocene transition period. Taken together, isolation by distance due to low dispersal capability, habitat fragmentation, and 
historical factors have shaped the current population structure of N. derjugini. 
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INTRODUCTION

Environmental and geographic heterogeneity are 
significant factors contributing to spatial genetic 

diversity (Manel et al., 2003; Palo et al., 2003). In 
addition, genetic differentiation among populations can 
be interpreted as the result of historical evolutionary 
processes such as genetic drift, founder effects, and 
acclimatisation to past ecological conditions including 
climatic oscillations during the Pleistocene glacial 
cycles (Hewitt, 2000; Weese et al., 2012). Physical and 
geographical barriers that separate populations may 
reduce population connectivity and gene flow, and, as 
a result, populations diverge due to natural selection 
and random genetic drift (Zhang et al., 2016). Isolation-
by-distance (IBD), the correlation of genetic divergence 
and geographic distances, is further inversely liked to 
effective population size (Sexton et al., 2014). Population 
divergence can also occur in different environments with 
evolving reproductive isolation due to ecologically-based 
divergent selection (Dyer et al., 2010; Freeland et al., 
2010; Wang et al., 2013), a process termed isolation by 
ecology or isolation by environment (IBE; Zellmer et al., 
2012; Shafer & Wolf, 2013).
 Population genetic divergence originating from 
geographical or environmental factors can be 
demonstrated through correlations of genetic distance 
measures with geographical or environmental distances 
(Wang et al., 2013). Assessing casual relationships 

between environmental and geographic factors and the 
genetic structure of populations is difficult (Balkenhol et 
al., 2009) because the interactions among various factors 
cannot always be detected by isolation-by-distance alone 
(Kittlein & Gaggiotti, 2008).  An integration of genetic and 
environmental data has been employed for many different 
goals, including the exploration of population genetic 
structure (Mota-Vargas & Rojas-Soto, 2012), selecting 
re-introduction sites (Martinez-Meyer et al., 2006), 
mapping the habitat of threatened species (Chunco et 
al., 2013), and designing appropriate management plans 
and conservation strategies (Gebremedhin et al., 2009). 
However, the ecological and geographical data which are 
necessary for devising the species conservation action 
plan are as yet lacking for many species (Farasat et al., 
2016).
 Neurergus derjugini (Nesterov, 1916) is a urodele 
species confined to living in highland streams of the 
mid-Zagros Mountains (630 and 2,057 masl), and a 
distribution range covering western Iran and parts of 
eastern Iraq.  Inhabited streams are surrounded by open 
oak forest and other plants such as amygdales scrublands, 
deciduous dwarf-scrublands, and cushion shrub land. In 
the northern part of its distribution, N. derjugini can live 
in streams without natural vegetation cover, including 
flooding meadows, agricultural lands, rangelands and 
orchards (Afroosheh et al., 2016).  However, drought, the 
collection of N. derjugini for the national and international 
pet trade, and habitat degradation are threats for this 
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species. Fragmented habitats, the diminished number of 
subpopulations, a small area (< 10 km2) for occupancy and 
a continuing decline in the range and quality of habitats 
are factors for listing N. derjugini as a Critically Endangered 
species by the International Union for Conservation of 
Nature (IUCN; Red List criteria: A3cde+4cde; B2ab [iii, iv, 
v] ver. 3.1) (Sharifi et al., 2009). 
 Here, we test the current genetic and geographical 
structure among populations of N. derjugini throughout 
the known distribution range in Iran and Iraq, based 
on partial sequences of the mtDNA ND2 genes, 1) to 
identify associations between genetic diversity and 
ecological-geographical differences, 2) to identify links 
between population genetics and climatic oscillations 
in the Quaternary and 3) to estimate levels of genetic 
variation within and among different populations of N. 
derjugini, in order to provide management plans for 
future conservation. 

MeThODs

Population sampling and sequencing
Population sampling was conducted for 15 populations 
throughout the range of species distribution in Iran 
and Iraq, via 22 sampling occasions during 2012 - 2014 
(Table 1, Fig. 1a). Tissue samples were obtained from 
77 individuals by removing a small section of the tail tip 
or toe using sterilised scissors. All tissue samples were 
stored in 95 % ethanol immediately after removal and 
then frozen at -20˚ C until processing. Genomic DNA 
was extracted using the GenNetBioTM tissue kit (Seoul, 
South Korea) following the manufacturer’s instructions. 
A mitochondrial fragment of ND2 gene (1036pb) was 
amplified and sequenced using primer L3780, 5′ TCG AAC 
CTA CCC TGA GGA GAT and H5018, 5′ TCT GGG TTG CAT 
TCA GAA GA (Babik et al., 2005). PCR conditions used for 
this region consisted of an initial denaturation step at 94˚ 

C for 3 minutes, followed by 35 cycles of 30s denaturation 
at 94˚ C, 30 s annealing at 58˚ C and 60 s extension at 72˚ 
C, and a final extension step of 4 min at 72˚ C.  Sequencing 
was performed by Macrogen Korea Laboratories. All 
sequences of partial mitochondrial ND2 have been 
deposited in the GenBank databases (accession numbers 
MK035716- MK035726 for Haplotypes 1-11).

Nucleotide polymorphisms
DNA sequences were aligned using Clustal W in the BioEdit 
v.7.0.5.3 (Hall, 1999) and by Muscle in MEGA 6 (Tamura et 
al., 2013).  Five closely related taxa, N. crocatus, N. kaiseri, 
N. strauchii, Triturus karelinii, and Ommatotriton vittatus 
were used as outgroups, using existing GenBank under 
accession numbers (DQ517788, DQ517789, DQ517790, 
DQ517837 and, DQ517844). As an additional outgroup, 
ND2 of N. kaiseri was sequenced in the present study as 
described above. The number of haplotypes, polymorphic 
sites, parsimony informative sites, haplotype diversity 
(Hd) and nucleotide diversity (pi) were determined using 
DnaSP v 5.10.01 (Rozas et al., 2010) and Arlequin v 3.1 
(Excoffier et al., 2005). Pairwise sequence divergence 
between haplotypes was calculated using the Kimura 
2-parameter (K2P) model (Kimura, 1980) using MEGA 6 
(Tamura et al., 2013), with standard errors calculated for 
1000 bootstrap replicates.

Phylogenetic analyses 
Phylogenetic relationships among haplotypes were 
determined by Bayesian analysis in MrBayes v3.2.2 
(Ronquist et al., 2012) with 10,000,000 generations, 
sampling each 1000th generation, and Maximum 
likelihood (ML) analyses conducted in PhyML, v 3.0 
(Guindon et al., 2010) with 1500 bootstrap replicates. 
jModelTest v 0.1.1 (Posada, 2008) was used to determine 
the best-fit substitution model for BI and ML analysis using 
the with Akaike information Criterion (AIK), and GTR+I 
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Locality Latitude Longitude elev. (m) haplotypes and their 
frequencies

ss h Pi Hd

1 Kavat 34º 52′ N 46º 30′ E 1601 Hap1(5), Hap2(1) 6 2 0.00032 0.333
2 Ghori ghale 34º 52′ N 46º 29′ E 1600 Hap1(5) 5 1 0.00000 0.000
3 Gholani 34º 54′ N 46º 27′ E 1575 Hap1(5) 5 1 0.00000 0.000

4 Dourisan 35º 01′ N 46º 23′ E 1600 Hap1(5) 5 1 0.00000 0.000

5 Darrenajjar 35º 05′ N 46º 18′ E 1472 Hap1(5) 5 1 0.00000 0.000

6 Lashkargah 35º 00′ N 46º 08′ E 1415 Hap3(1), Hap4(4) 5 2 0.00039 0.400

7 Nowdeshe 35º 11′ N 46º 14′ E 1760 Hap5(3), Hap6(2) 5 2 0.00174 0.600

8 Hani garmale 35º 14′ N 46º 08′ E 1383 Hap6(4) 4 1 0.00000 0.000
9 Tawale 35º 11′ N 46º 11′ E 1400 Hap6(4) 4 1 0.00000 0.000
10 Balkha 35º 12′ N 46º 09′ E 1482 Hap6(4) 4 1 0.00000 0.000
11 Penjwin 35º 36′ N 45º 58′ E 1421 Hap7(4), Hap8(1) 5 2 0.00039 0.40
12 Siya gwez 35º 47′ N 45º 47′ E 1689 Hap7(6) 6 1 0.00000 0.000
13 Shalmash 36º 05′ N 45º 29′ E 1622 Hap9(5), Hap10(1) 6 2 0.00032 0.333
14 Saqez 36º 03′ N 46º 02′ E 2168 Hap9(6) 6 1 0.00000 0.000
15 Benjun 36º 32′ N 45º 31′ E 2152 Hap11(6) 6 1 0.00000 0.000

Total 77 1 0.00389 0.82399

Table 1.  List of sampling locations used in this study and haplotypes with genetic diversities and frequencies. SS: sample sizes, 
H: haplotypes and Pi: nucleotide diversity and Hd: haplotype diversity.
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substitution models supported by our data. A consensus 
tree with posterior probabilities was generated using 
FigTree v1.4.0 (Rambaut, 2012).  Furthermore, we applied 
a nested clade phylogeographic analysis (NCPA) using TCS 
v 1.21 for phylogeographic interpretation of relationships 
among haplotypes, (with a 95% parsimony connection 
limit, Clement et al., 2000).

Population analysis
Analysis of molecular variance (AMOVA) was conducted 
on (1) populations from three geographical regions as 
southern (populations 1-7), central (populations 9-12) 
and northern (populations 13-15), where selection 
of population groups was based on the haplotype 
groups designated in the phylogeny trees, and (2) all 
populations as one group to determine the level of 
genetic differentiation within and among N. derjugini 
populations, using Arlequin v 3.1 (Excoffier et al., 2005) 
with 10,000 permutations. Arlequin 3.1 (Excoffier et al., 
2005) was also used to measure pairwise FST between 
populations.
 
Isolation by geographical and environmental distance
Mantel tests were used to evaluate the connection 
between geographical and environmental distances with 
genetic distances using Arlequin 3.1 (Excoffier et al., 
2005). This analysis was performed based on a matrix 
of pairwise FST and a matrix of geographical distances 
as well as environmental distances with 10000 random 
permutations. We measured geographic distances 
between populations using DIVA-GIS v 7.5.0 (Hijmans et 

al., 2012).  We used eight climate and land cover variables 
for our analysis that had previously been evaluated by 
Sharifi et al. (2017).  These variables included precipitation 
of warmest quarter, precipitation of coldest quarter, 
temperature seasonality (standard deviation×100), 
isothermally (BIO2/BIO7×100), temperature annual 
range (BIO5–BIO6), mean temperature of driest quarter, 
mean temperature of wettest quarter and elevation. 
Environmental variables were processed in ArcMap 
10.3 software and data matrices were analysed using 
SPSS version 16.0. In addition, a three-way Mantel test 
was performed between matrices of pairwise genetic 
distances and environmental distances, adding the matrix 
of geographical distances among populations.

Demographic analysis
Past population dynamics of N. derjugini was estimated 
with a Bayesian skyline plot (BSP) using BEAST, v 2.4.5 
(Bouckaert et al., 2014). This analysis was carried out 
with the uncorrelated lognormal relaxed clock and the 
Bayesian skyline as a coalescent model with the mutation 
rate of 0.64% Myr (Weisrock et al., 2001). We ran the 
MCMC procedure with 100,000,000 generations, and 
the genealogy and parameters of the model were stored 
every 10,000 iterations.  We used Tracer v 1.6 (Rambaut et 
al., 2014) to assess the effective population size through 
time.

Divergence time estimate 
Four estimates of divergence between lineages of N. 
derjugini were obtained using BEAST v 2.4.5 (Bouckaert 

Phylogeography of Neurergus derjugini 

Figure 1.  (a) Map illustrating the geographic distribution of N. derjugini and the 15 sampling localities in the study area 
(numbers show localities as indicated in Table 1) in Iran and Iraq; pies represent the haplotype frequency in each population 
that their colours are in accordance with haplotypes (H1-H11) in the haplotype network. (b) Haplotype network showing the 
phylogenetic relationships among the 11 haplotypes. Different haplotypes in the haplotype network have different colours. 
Sizes of circles are representative of the haplotype frequencies. Open dots represent missing intermediate haplotypes.
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et al., 2014). In all calibrations, we used a Bayesian 
Markov Chain Monte Carlo (MCMC) approach with the 
uncorrelated lognormal relaxed clock and the constant 
size as a coalescent model. The substitution model for each 
partition was obtained by Partition Finder v 2.1.1 (Lanfear 
et al., 2016). Runs were carried out based on 100 million 
generations, sampled every 1000 generations with the 
first 10% discarded as burn-in. We checked convergence 
and parameter estimates with ESS values >200 by Tracer 
v 1.6 (Rambaut et al., 2014).  TreeAnnotator v1.8.4 
(Drummond & Rambaut, 2007) was used to find the 
maximum credibility tree.  In the absence of a fossil record 
of Neurergus and internal calibration points to calibrate 
the rate of divergence, we used external calibration 
points based on the estimated divergence time between 
N. kaiseri and N. struchii by Zhang et al. (2008). The root 
ages were 19.1 (12.1-26.4) Myr and 9.5 (5.4-13.8) Myr in 
calibration I and calibration II, respectively. Calibration III 
was carried out based on the evolutionary rate of the ND2 
gene in salamanders identified by Weisrock et al. (2001) 
as 0.64% per Myr per lineage. Finally, calibration IV was 
carried out based on one fossil by approximating the 
crown of the genus Triturus dated at 24 Myr (Weisrock 
et al., 2001). In this analysis, in addition to the previous 
outgroups (N. crocatus, N. kaiseri, N. strauchii, T. karelinii, 
and Ommatotriton vittatus), we used two sequences of 
T. carnifex and one sequence each from T. dobrogicus, 
T. cristatus, T. pygmaeus and, T. marmoratus (available 
in GenBank under accession numbers: GQ258952, 
GQ258962, JN831597, NC_015790, GU982456 and, 
GQ258948).

ResULTs

We identified 11 unique haplotypes among 77  
N. derjugini individuals based on the mitochondrial ND2 
sequence (1036 base pairs), with 63 base pairs of the 
tRNA-Met gene at the beginning of the sequence. The 
ND2 mtDNA fragment contained a low polymorphism 
with only 16 variable sites, of which 14 were parsimony 
informative and 2 were singleton-variables including 14 
transitions and 2 transversions (Table 2).  Mean nucleotide 
compositions were A: 36.15 %, T: 25.36 %, C: 26.55 % and 
G: 11.94 %. The haplotype and nucleotide diversities 
across all populations of N. derjugini were 0.82399 and 
0.00389, respectively. The haplotypes were allocated to 
different localities across the species’ range.  Seven of the 
eleven haplotypes were unique to their population, and 
two were shared only in two populations. Haplotype 1 
was most widespread and abundant, shared among five 
of the fifteen populations. Ten populations had a single 
haplotype and the highest haplotype diversity (Hd = 0.60) 
occurred in Nowdeshe from the southern portion of the 
distribution range (Table 1).  Average sequence divergence 
among N. derjugini haplotypes was low (0.54 ± 0.06%), 
whereas divergence of N. derjugini with N. kaiseri and N. 
crocatus was 6.8 ± 0.7% to 5.9 ± 0.7% respectively.
 Bayesian and ML phylogenetic analyses based on 11 
haplotype sequences of N. derjugini and five outgroup 
taxa had the identical topology (Fig. 2). All samples from 
15 populations throughout the distribution range formed 

a monophyletic group with high support (posterior 
probability = 1.00, likelihood bootstrap proportion = 
97).  The distribution of haplotypes was consistent with a 
northern, central, and southern part of the range. The TCS 
analysis (Fig. 1b) supported this phylogenetic tree. The 
geographic distribution of haplotypes suggests that gene 

Figure 2.  Phylogenetic trees of haplotypes implemented in 
PhyML and MrBayes based on partial ND2 gene sequence of 
77 individuals for N. derjugini (Bayesian posterior probability 
values are above the branches, maximum likelihood 
bootstrap values are below the branches).

Figure 3.  The plot of simple Mantel test indicating the 
correlation between (a) the geographic and genetic distances 
(b) environmental distance with genetic distance among 15 
populations of N. derjugini.
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flow between northern and southern regions is low. 
 The AMOVA revealed that most genetic variation was 
explained by differences among regions (74.91 % genetic 
variation: FCT = 0.74, P < 0.01) followed by populations 
within regions (21.13 % genetic variation: FSC = 0.84, P 
< 0.001; Table 3). Similar significant genetic differences 
exist among populations without the grouping (Table 3). 
Table 4 shows pairwise Fst between populations.
 There was a significant correlation between pairwise 
genetic distances and Euclidean distances (two-way 
Mantel tests, r = 0.54, P < 0.0001; Fig. 3a), a well as 
environmental distances (r = 0.37, P = 0.0012; Fig. 3b). 
Results of the three-way Mantel test revealed that the 
correlation between genetic and geographical distances 
remained significant even after accounting for the 
effect of environmental distance (r = 0.42, P = 0.0001). 

On the other hand, the elimination of the influence of 
geographical distance in the partial Mantel test resulted 
in a non-significant association between genetic and 
environmental distances (r = -0.097, P = 0.183).
 The Bayesian skyline plot (Fig. 4) suggests that the 
population size was relatively stable from about 80,000 
years ago (the middle Pleistocene) until approximately 
25,000 years ago near the Last Glacial Maximum (LGM), 
followed by a contraction and an increase in effective 
population size starting at about 12,000 years ago near 
the Pleistocene-Holocene transition period. 
 Estimates of divergence between haplogroups in 
four calibrations are shown in Fig. 5. Calibrations I and 
II were the youngest and oldest, and estimation times 
by calibrations III and IV were between calibration I and 
II, while divergence times of calibration III was closer to 

ha 

P

Polymorphic site Locality Total

1 183 249 319 342 370 453 567 661 723 756 774 813 828 930 939 984 Ka Ghor Ghol Do Da La No Ha Ba Ta Pe Si Sh Sa Be

2 A G A A G A A T T C G C A C C C 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 25

3 . . . . A . . . . . . . . . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 . A . . . . . . . . . . . . . T 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

5 . A . . . . . . . . . . . . . . 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 4

6 . . G G . . . . . . . . . . . . 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3

7 C . G . . . C . . . . . . . . 0 0 0 0 0 0 2 4 4 4 0 0 0 0 0 14

8 C . . G . . . C . . A T G . . . 0 0 0 0 0 0 0 0 0 0 4 6 0 0 0 10

9 C . G . . . C . T A T G . . . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

10 C . . G . C G C C . . . . . T . 0 0 0 0 0 0 0 0 0 0 0 0 5 6 0 11

11 C . . G . C G C C T . . . . T . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

C . . G . C . C C . . . . T T . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6

Sample size 6 5 5 5 0 5 4 4 4 4 5 6 6 6 6 77

Number of polymorphic sites 1 0 0 0 0 1 3 0 0 0 1 0 1 1 0 16

Number of transitions 1 0 0 0 0 1 2 0 0 0 1 0 1 0 0 14

Number of transversions 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2

Number of parsimony informative sites 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 14

Number of nucleotide difference 0.3 0 0 0 0 0.40 1.80 0 0 0 0.40 0 0.33 0 0 4.03

3 0 0 0 3

Table 2.  Variable nucleotide sites and genetic variation within the partial sequences of the ND2 gene for 11 haplotypes of 77 
Neurergus derjugini individuals in different localities

structure source of variation d.f. Variation (%) FsC FsT FCT

Three region Among regions           2 74.91 0.84** 0.96** 0.74**
Among populations within regions  12 21.13

Within populations     62 3.97

The studies samples Among populations 94.79

Within populations     5.20 0.94**

Table 3.  Results of analysis of molecular variance (AMOVA) using partial ND2 gene

Significant values are shown for p < 0.05 (*) and p < 0.01 (**)

Ka =Kavat, Ghor= Ghori ghale, Ghol= Gholani, Do= Dourisan, Da= Darrenajjar, La= Lashkargah, No= Nowdeshe, Ha= Hani garmale, Ta= Tawale, Ba= 
Balkha, Pe= Penjwin, Si= Siya gwez, Sh= Shalmash, Sa= Saqez, Be= Benjun.
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calibration I. Taken together, divergence between the 
south-central and northern haplogroups took place in 
the early or middle Pleistocene (95% HPD, approximately 
0.66 – 1.03 Myr), and divergence between southern and 
central haplogroups took place in the middle Pleistocene 
(95% HPD, approximately 0.41 – 0.83 Myr). 

DIsCUssION

The present study revealed a low nucleotide diversity 
and a relatively high haplotype diversity for the total 
populations of N. derjugini. Haplotype diversities within 
ten populations of N. derjugini in our study were zero. 
Additionally, mean sequence divergence between all 
haplotypes (0.54 ± 0.06%) was low. Also, population 
genetic analyses exhibited significant phylogeographic 
structure in this species. There are reports of strong 

phylogeographic structure and low level of genetic 
divergence in several species of amphibians (Matsui et 
al., 2008, Richter et al., 2009, Farasat et al., 2016), which 
has been attributed to high frequency of inbreeding due 
to small population sizes, habitat loss, low dispersal ability 
(Allentoft & O’Brien, 2010), relatively short evolutionary 
history (Wang et al., 2017), a recent range expansion 
from glacial refugia (Makowsky et al., 2009; Pabijan et al., 
2015; Vásquez et al., 2013), and a slow evolutionary rate 
at the genomic level (Chen et al., 2012).  We expected 
genetic diversity of these populations to be low, due to a 
small geographical range and fragmentation of terrestrial 
habitat (Afroosheh et al., 2016), local extinctions (Sharifi 
& Assadian, 2004), and a small home range (Sharifi and 
Afroosheh, 2014). 
 Our phylogenetic analyses showed that all sampled 
populations form a monophyletic group. Average 
sequence divergence among N. derjugini and N. kaiseri, 
and between N. derjugini and N. crocatus, are 6.8% 
and 5.9% respectively. However, the average sequence 
divergence among populations of N. derjugini is only 
0.4%. Although populations in different regions have 
specific haplotypes, there are very few mutational steps 
between the haplotypes. A similar study on N. derjugini 
conducted by Hendrix et al. (2014) based on mitochondrial 
genes (12S ribosomal RNA and control region) and one 
nuclear gene (KIAA gene) indicated that there are low 
genetic differences between populations separated as N. 
microspilotus and N. derjugini.    
 Mantel tests demonstrated that differentiation 
between populations of N. derjugini is more associated 
with geographic distances rather than environmental 
distances, a pattern that is typical for species with low 
dispersal capacity and low habitat availability (Dixo et al., 
2009). Due to limited gene flow, geographically separated 
populations will become isolated even in the absence of 
barriers.  Genetic drift and inbreeding will reduce genetic 
diversity in such populations (Irwin, 2002; Louy et al., 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.000

2 -0.034 0.000

3 -0.034 0.000 0.000

4 -0.034 0.000 0.000 0.000

5 -0.034 0.000 0.000 0.000 0.000

6 0.733 0.833 0.833 0.833 0.833 0.000

7 0.607 0.625 0.625 0.625 0.625 0.694 0.000

8 0.934 1.000 1.000 1.000 1.000 0.945 0.452 0.000

9 0.934 1.000 1.000 1.000 1.000 0.945 0.452 0.000 0.000

10 0.934 1.000 1.000 1.000 1.000 0.945 0.452 0.000 0.000 0.000

11 0.942 0.967 0.967 0.967 0.967 0.945 0.780 0.928 0.928 0.928 0.000

12 0.972 1.000 1.000 1.000 1.000 0.975 0.830 1.000 1.000 1.000 0.040 0.000

13 0.954 0.974 0.974 0.974 0.974 0.956 0.833 0.950 0.950 0.950 0.950 0.976 0.000

14 0.976 1.000 1.000 1.000 1.000 0.978 0.860 1.000 1.000 1.000 0.975 1.000 -.0.000 0.000

15 0.976 1.000 1.000 1.000 1.000 0.978 0.860 1.000 1.000 1.000 0.975 1.000 0.923 1.000 0.000

Table 4.  FST values between populations. Numbers are representative of localities based on Table 1.

Figure 4.  Bayesian skyline plot (BSP) based on partial ND2 
sequences of N. derjugini. The x-axis shows time in the past 
in thousands of years, and the y-axis shows Ne (effective 
population size). Dashed lines show the median estimates, 
and white areas between the blue lines show the 95 % 
highest posterior density (HPD) limits.
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2007). The isolation by geographic distance mechanism 
has been reported in populations of N. kaiseri, the sister 
species of N. derjugini (Farasat et al., 2016).  In the present 
study, the Mantel test revealed a positive but statistically 
non-significant correlation between genetic and 
environmental distances. Contrary to our expectations, 
distinct ecological parameters had a less strong influence 
on the genetic divergence among populations.
 BSP analysis indicated an overall stationary historical 
population size with a contraction around the LGM 
followed by an expansion at the Pleistocene-Holocene 
transition. The classic scenario based on glacial 
contraction and postglacial expansion as is known in 
some species that are located in regions with higher 
latitude may not happen in mid-latitude areas such as 
Iran (Kehl et al., 2009). Different species in the Middle 
East may also respond in a different way. For example, 
Najafi et al. (2018) showed that divergence between 
two major geographical clades of Rhinolophus euryale 
(Chiroptera) in the Pleistocene was congruent with the 
classic scenario. However, Shahabi et al. (2017) reported 

contraction of populations in another Rhinolophid bat, R. 
euryale,  in glacial periods within glacial refugia in southern 
Zagros Mts. It was also suggested by Ahmadzadeh et 
al. (2013) that there was a refuge in a narrow Zagros 
corridor between the Sabalan and Bozghosh mountain 
ranges during glacial periods for Iranolacerta brandtii 
(Reptilia). However, Javanbakht et al. (2017) reported that 
Transcaucasian tortoises had a long-term range stability 
and did not show shift in their range during glaciation and 
interglaciation.  
 The genetic variance observed within N. derjugini 
populations and its geographical distribution suggests 
that historical isolation has probably played a role in 
shaping the genetic structure of N. derjugini. Divergence 
dates based on four calibrations estimated that the 
most ancient diversification have probably occurred in 
haplogroups distributed in the south, centre and north 
during the early or middle Pleistocene, probably relating 
to the oscillating glacial cycles. Haplogroups of southern 
region diversified approximately around the LGM. Since 
the number of first order breeding streams and newt 

Phylogeography of Neurergus derjugini 

Figure 5.  Chronogram of diversification implemented in BEAST based on partial ND2 gene for N. derjugini. The table shows 
three calibrations and the ranges of the divergence times for nodes in millions of years with 95 % highest posterior density 
(95 % HPD).
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abundance (as reported by the number of visual counts) 
are substantially higher in the southern region of the 
distribution (Afroosheh et al., 2016), it seems that N. 
derjugini expanded to surrounding areas and created 
extant distribution patterns with the combination of low 
nucleotide diversity and high haplotype diversity. 
 The Zagros open woodland of mostly oak in western 
Iran and eastern Iraq has experienced forest expansion 
and contraction as the result of fluctuating climate during 
the Pleistocene (Khalyani et al., 2013).  Moreover, this area 
has been affected by livestock grazing and agricultural 
development since the beginning of the 5th Millennium 
BP (Wright et al., 1967). Long term traditional land use 
for grazing livestock by nomads and other disturbances 
associated with recent population growth are two main 
driving factors that have resulted in massive deforestation 
or changes in the vertical structure, composition, 
and configuration of forests in the Zagros Mountain 
Range (Metzger et al., 2005). The remnants of formerly 
widespread open woodlands are currently present only in 
the southern part of the geographic range of N. derjugini. 
The few remaining populations of N. derjugini in the 
northern part of its distribution are located in areas that 
presumably lost their natural vegetation cover decades 
ago (Afroosheh et al., 2016). 
 Low levels of genetic variation were observed among 
most populations of N. derjugini. Whether this low 
diversity is a threat to any of these populations has not 
been documented, and many of these populations may 
persist despite this. Nevertheless, a general correlation 
between population fitness and genetic diversity has 
been demonstrated in many groups of vertebrates 
including amphibians (Reed & Frankham, 2003; Jordan 
et al., 2009). The maximum linear distance between 
the most segregated breeding streams in the southern 
and northern parts of the species range is only 205 km. 
However, localities inhabited by N. derjugini are separated 
with nearest neighbour distances averaging 7.95 km. 
Surveys on the abundance of N. derjugini in 32 of the 42 
localities within the Iranian range of the species resulted 
in the total visual count of 1,379 adults, juveniles, and 
larvae (mean/stream = 43; range, 1−601).  Most of these 
observations (51%) were found in just two of the localities, 
44% were found in 14 streams, and the remaining 5% were 
scattered among 16 streams (Afroosheh et al., 2016).
 Very low levels of genetic variation within each small 
population and the lack of connectivity among most 
populations of N. derjugini occurring in fragmented 
habitats suggest that the species is at high risk of 
becoming extinct. Considering the isolation of many 
N. derjugini populations, it would seem reasonable to 
focus on management efforts to minimise future genetic 
drift and inbreeding by increasing population sizes and 
habitat connectivity.  This is probably best accomplished 
by improving or expanding the available wetland habitats 
at each site to facilitate a natural population increase. 
We also recommend the supplementation of extant 
populations with captive bred individuals, a strategy 
which is enabled by the existence of a captive breeding 
facility for this species (Sharifi & Vaissi, 2014; Vaissi & 
Sharifi, 2018).
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